ICH	ÜÜÜ	nck	1001	IIOUI	urg.	1000	тіфш	- CO
106	0-5	32.1	149	10-23	82.0	120	22-24	180.1
147	21-24	_	150	2-15	70.6	121	0-9	174.6
148	0-18	358.0	166	22-24	68.6	126	3-18	172.8
149	4-24	0.0	167	0-24	55.6	137	17-24	167.0
150	0-8	356.5	168	0-6	65.0	138	0-12	160.7
155	0-24	354.4	176	12-24	56.1	13 9	3-24	165.7
156	0-20	356.2	177	0-24	52.6	140	0-1	_
169	19-24	347.2	178	0-3	58.4	140	4-24	158.6
170	0-21	341.1	187	22-24		141	0-3	
218	1-24	307.0	188	0-24	39.0	141	9-24	161.4
219	0-19	302.6	189	0-15	49.2	142	0-12	156.7
246	11-22	288.1	192	13-24	46.3	180	9-17	137.2
247	10-24	281.7	193	0-13	41.9	182	3-24	134.4
248	0-22	286.1	195	15-24	36.7	183	0-1	_
299	22-24		196	0-10	40.3	183	6-17	124.0
300	0-21	249.7	197	17-23	_			
303	16-24	245.0	228	7-24	17.1			
304	0-15	247.4	229	0-3				
324	7-24	229.9	229	7-24	11.6			
325	0-24	226.0	230	0-24	15.9			
327	7-24	225.7	231	0-9	8.9			
			325	7-24	300.0			
			326	0-24	302.7			
			327	0-18	309.5			

Fig. 1. AMPTE/CCE orbits shown in the equatorial plane for all hours included in the quiet time data set.

based on indices of magnetospheric activity, Kp and Dst; and two in situ checks from satellite data, proton energy density and the "approach to equilibrium." Criteria 5 and 6, though based on the data, exclude only two limited periods near a major storm as will be discussed below. The criteria are as follows: (1) |Dst| < 11 nT, for every hour included; (2) |Dst| < 16 nT, for 24 hours preceding each hour included; (3) Kp < 2+, for every 3 hour period included; (4) Kp < 3, for 24 hours preceding each hour included; (5) H⁺

energy density (L=3-5) <60 keVcm⁻³; (6) H⁺ fluxes "near" th time equilibrium values.

Active magnetospheric conditions generally pump up the ricurrent, and therefore depress the *Dst* index. Quiet times, on to other hand, are characterized by a gradual increase in *Dst* back baseline values, so the quietest periods should theoretically haw *Dst* of 0. Positive *Dst*, if it is not just normal fluctuation around could arise from a poor normalization or from a magnetospheric d