next up previous
Next: About this document ... Up: The spinning terrella plasma Previous: Conclusions

Bibliography

1
Lyons, L. R. and Williams, D. J. Quantitative Aspects of Magnetospheric Physics, (D. Reidel, Dordrecht, 1984).

2
M. Temerin, What do we really know about auroral acceleration. In Results of the IASTP Program, COSPAR Vol 20, No 4-5., edited by C. Russell. 1025-1035 (1997).

3
Krall, N. A. and Trivelpiece, A. W., Principles of Plasma Physics, (San Francisco Press, San Francisco, 1986).

4
Alfven, H. and C.-G. Falthammar. Cosmical Electrodynamics, Fundamental Principles. (Clarendon, Oxford, 1963).

5
Whipple, Jr, E. C. The signature of parallel electric fields in a collisionless plasma. J. Geophys. Res., 82, 1525 (1977).

6
Fishman G. J., P. N. Bhat, R. Malozzi, J. M. Horack, T. Koshut, C. Kouveliotou, G. N. Pendleton, C. A. Meegan, R. B. Wilson, W. S. Paciesas, S. J. Goodman, H. J. Christian, Discovery of Intense Gamma-Ray Flashes of Atmospheric Origin, Science, 264, 1313, (1994).

7
R.E. Ergun, C.W. Carlson, J.P. McFadden, F.S. Mozer, G.T. Delory, W. Peria, C.C. Chaston, M. Temerin, R. Elphic, R. Strangeway, R. Pfaff, C.A. Cattell, D. Klumpar, E. Shelley, W. Peterson, E. Moebius, and L. Kistler, FAST satellite observations of electric field structures in the auroral zone Geophys. Res. Lett., 25, 2025, (1998).

8
Sheldon, R. B., H. Spence, and J. Fennell. Observation of 40 kev field-aligned ion beams. Geophys. Res. Lett., 25, 1617, (1998).

9
Sheldon, R.B. The Spinning Terrella Plasma Accelerator. In Proceedings of the Young Faculty Research at UAH, 95-100, (1999).

10
Emslie, A. Gordon and Henoux, Jean-Claude, The Electrical Current Structure Associated with Solar Flare Electrons Accelerated by Large-Scale Electric Fields Astrophysical Journal v.446, 371 (1995).

11
Williams, D. L., B. H. Mauk, R. E. McEntire, E. C. Roelof, T. P. Armstrong, B. Wilken, J. G. Roederer, S. M. Krimigis, T. A. Fritz, and L. J. Lanzerotti. Electron beams and ion composition measured at io and in its torus. Science, 274, 401-403 (1996).

12
Pringle, J. E. Cosmogony of stellar and extragalactic jets. In Astrophysical Jets: Space Telescope Science Institute Symposium Series, pages 1-12. Cambridge University Press, 1993.

13
F. Fiore , F. La Franca , P. Giommi , M. Elvis , G. Matt , A. Comastri , S. Molendi , I. Gioia The contribution of faint AGN to the hard X-ray background MNRAS, 306, L55, (1999).

14
Uman, M. A. Lightning. (Dover Publications, New York. 1984).

15
Knight, L., Parallel electric fields, Planet. Space Sci., 21, 741, (1973).

16
Hansen, C. and J. Fajans. Dynamic and Debye shielding and antishielding in magnetized, collisionless plasmas. Phys. Rev. Lett., 74, (1995).

17
Sheldon, R.B., Plasmasheet Convection into the Inner Magnetosphere During Quiet Conditions. In Solar Terrestrial Energy Program: COSPAR Colloquia Series Vol. 5, edited by D.N. Baker et al., Pergamom Press, 313-318, (1994).

18
Mursula, K., T. Braysy, and G. Marklund. ULF wave activity above the ionosphere during magnetic storms. 31st Scientific Assembly of COSPAR, abstracts, D0.5-0019, (1996).

19
Chenette, D., W. Imhof, S. Petrinec, M. Schulz, J. Mobilia, J. Pronko, M. Rinaldi, J. Cladis, F. Fenrich, N. Østgaard, and M. McNab. Global energy-resolved x-ray images of northern aurora and their mappings to the equatorial magnetosphere. In Sun-Earth Plasma Connections: Geophysical Monograph Series Vol. 109, pages 65-76. American Geophysical Union, Wash. D.C., (1999).

20
Sheldon, R. B. and H. E. Spence. A new magnetic storm model. In J. Horwitz, editor, Geospace Mass and Energy Flow: Result from the International Solar-Terrestrial Physics Program, pages 349-354 Washington, D.C., (1998).

21
Sheldon, R.B. The Bimodal Magnetosphere and Ring Current, Radiation Belt, and Tail Transducers, Adv. Sp. Res, 25, 2347, (2000).

22
Hamilton, D. C., et al. Ring Current Development during the great geomagnetic storm of February 86, J. Geophys. Res., 93, 14,343-14,355, (1988).

23
Daglis, I. A. and W. I. Axford. Fast ionospheric response to enhanced activity in geospace: Ion feeding of the inner magnetotail. J. Geophys. Res., 101, 5047-5065, (1996).

24
Grande, M., C. H. Perry, A. Hall, J. Fennell, and B. Wilken. Survey of ring current composition during magnetic storms. Adv. Space Res., 20, 321-326, (1997).

25
Zhang, Shuang-Nan, private communication, 1999.

26
Blandford, R. Present and future blazar variability (i). In H.R. Miller, J. R. Webb, and J. C. Noble, editors, Blazar Continuum Variability, Conference Series, Vol 110, pages 475-4882. Astronomical Society of the Pacific, 1996.

27
Marscher, A. P. Variability of the non-thermal emission in the jets of blazars (i). In H.R. Miller, J. R. Webb, and J. C. Noble, editors, Blazar Continuum Variability, Conference Series, Vol 110, 248-261. Astronomical Society of the Pacific, 1996.

28
Rothwell, P. L., M. B. Silevitch, L. P. Block, and C.-G. Fälthammer. Single ion dynamics and multiscale phenomena. In J. L. Horwitz, N. Singh, and J. L. Burch, editors, Cross-Scale Coupling in Space Plasmas, Geophysical Monograph 93, pages 151-154. American Geophysical Union, (1995).

Figure 1. Astrophysical jets as observed in a young stellar object, an active galactic nuclei, and a schematic model showing the symmetric pair of central jets surrounded by a spinning accretion disk. (Courtesy of HST).

Figure 2. The outside of the 19 inch stainless bell jar vacuum chamber (top panel) and the inside of the UAH Spinning Terrella Accelerator. See text for details.

Figure 3. First and second panel show ion and electron injection showing magnetic trapping of plasma. Third panel shows electron injection at 2.5kV in false color. Fourth panel similar at 4 kV.

Figure 4. Ion injection into N$_2$ at 50mTorr (top panel) and 300mTorr (bottom panel) showing magnetic trapping of plasma in a torus near the equator of the magnet.

Figure 5. Ion injection into Helium at 100mTorr (top panel) and 400 mTorr (bottom panel) showing circular plasma discharges that follow the magnetic flux tube.

Figure 6. Ion injection into 200 mTorr Helium showing the effect of spinning the magnet (bottom) versus a stationary magnet (top panel).

Figure 1: Astrophysical jets as observed in a young stellar object and an active galactic nuclei (Courtesy of HST).
\begin{figure}\centering {
\epsfig{file=jet1.eps,width=\columnwidth}\\
\epsfig{file=jet3.eps,width=\columnwidth} }
\end{figure}

Figure 2: The outside of the 19 inch stainless bell jar vacuum chamber (top panel) and the inside of the UAH Spinning Terrella Accelerator. See text for details.
\begin{figure}\centering {
\epsfig{file=outside.eps,width=\columnwidth}\\
\epsfig{file=inside.eps,width=\columnwidth} }
\end{figure}

Figure 3: First and second panels show ion and electron injection respectively revealing magnetic trapping of plasma. Third and fourth panels show electron injection at 2.5kV and 4 kV respectively in false color.
\begin{figure}\centering {
\epsfig{file=purpleglow.eps,width={0.48\columnwidth}...
...\epsfig{file=electron2.eps,width={0.48\columnwidth}, height=4cm} }
\end{figure}

Figure 4: Ion injection into N$_2$ at 50mTorr (top panel) and 300mTorr showing magnetic trapping of plasma in a torus near the equator of the magnet.
\begin{figure}\centering {
\epsfig{file=ion1.eps,width=\columnwidth}\\
\epsfig{file=ion2.eps,width=\columnwidth} }
\end{figure}

Figure 5: Ion injection into Helium at 100mTorr (top panel) and 400 mTorr showing circular plasma discharges that follow the magnetic flux tube.
\begin{figure}\centering {
\epsfig{file=helium1.eps,width=\columnwidth}\\
\epsfig{file=helium2.eps,width=\columnwidth} }
\end{figure}

Figure 6: Ion injection into 200 mTorr Heli.um showing the effect of spinning the magnet (top panel) versus a stationary magnet.
\begin{figure}\centering {
\epsfig{file=nospin.eps,width=\columnwidth}\\
\epsfig{file=spin.eps,width=\columnwidth} }~
\end{figure}


next up previous
Next: About this document ... Up: The spinning terrella plasma Previous: Conclusions
Rob Sheldon 2001-03-09