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The present paper (re)derives current sheet equilibrium solutions on the basis of the so-called κ
distribution functions for the particles. The purpose of the present paper is to remedy a shortcoming
in a recent paper [W.-Z. Fu and L.-N. Hau, Phys. Plasmas 12, 070701 (2005)], where the authors first
formulated the equilibrium current sheet model with the κ distribution. Although mathematically
correct, their model contains a peculiarly unphysical feature in that the global temperature profile
diverges in the asymptotic regime. The present paper shows that such an unphysical characteristics
can be rectified if one assumes a finite stationary background population of the particles. We further
extend the analysis by considering a current sheet model where the electron current is embedded
within a thicker ion current layer, and where there exists a weak electrostatic potential drop across
the current sheet.

I. INTRODUCTION

Space plasmas are found in many diverse parameter
regimes. Transition between one plasma regime to the
next often occurs in a narrow layer where strong cur-
rents flow. The boundary layer thus forms a current
sheet through which mass, momentum, and energy can
be communicated between these plasma regimes. In addi-
tion, energy transformation from fields to particles or vice
versa can take place in these current sheets. For instance,
in magnetospheric research, prominent features such as
bow shock, magnetopause, and cross-tail current are ex-
amples of these current sheets found in every planetary
magnetosphere and magnetized moon so far explored
[1, 2]. Of high interest are dynamic processes such as
magnetic reconnection and current disruption that reside
in these current sheets [3–10]. As a result of the particle
interaction with the turbulence driven by these dynamic
processes, particle populations in these current sheets de-
viate from thermal equilibrium, resulting in their velocity
distribution, departing from the well-known Maxwellian
(or gaussian) distribution (e.g, see Ref. [11]).

One of the most commonly employed models of the
current sheet equilibria is the classic Harris solution [12].
A fundamental assumption in the Harris solution is that
the particle distribution is specified by a gaussian ve-
locity distribution function. In space environment, how-
ever, purely gaussian distributions of particles are almost
never observed, as mentioned above. Instead, particle
distributions feature extended energetic tail population,
often modeled by the so-called κ distribution function
[13]. Recently, the κ distribution has attracted much at-
tention, not simply as a convenient mathematical analyt-
ical model to fit the data, but as a potentially legitimate

theoretical model representing an equilibrium solution of
an alternative thermodynamic state. The recent trend
was initiated by the work of Tsallis [14], who proposed
an alternative definition of the entropy. The thermody-
namical theory that relies on the Tsallis entropy came
to be known as the non-extensive thermostatics [15–19],
and according to such a theory, the equilibrium state of
a system governed by the non-extensive entropy law cor-
responds to the κ distribution. In contrast, the textbook
thermostatics theory based upon the classic Boltzmann-
Gibbs definition of the entropy results in the gaussian
model as the equilibrium solution.

In a recent paper Fu and Hau [20] obtained a one-
dimensional current sheet equilibrium solution on the ba-
sis of the κ distribution, which is a direct generalization of
the Harris equilibrium. We shall present a brief overview
of their solution in the next section, but we hasten to
point out that although their model better represents
the real situation in nature (and their solution is cer-
tainly mathematically correct), a peculiar feature of the
κ-distribution model of the current sheet is that the effec-
tive kinetic temperature monotonically increases as one
moves away from the neutral sheet, which needlessly to
say, is apparently unphysical.

The purpose of the present discussion is to rectify the
unphysical temperature profile associated with the cur-
ren sheet model proposed in Ref. [20]. We also propose
further generalization of the model in Ref. [20], in which
the current sheet can possess a weak electrostatic po-
tential. The weakly charged current sheet model in the
context of the gaussian distribution was first formulated
in Ref. [21]. The model to be discussed later differs from
that of Ref. [21] in that the particle distribution is the κ
model instead of the gaussian.
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II. CURRENT SHEET EQUILIBRIA WITH κ
DISTRIBUTION

In the present analysis, we assume that average plasma
number density varies along the z axis. The ambient
magnetic field is directed along the x axis (hence, we
only need to be concerned with the y component vector
potential), and the electric field vector is directed along
the z axis. The non-trivial invariants of the equilibrium
Vlasov equation are the canonical momentum and total
Hamiltonian, given respectively by

Pyj = mjvy +
ejAy

c
,

Hj =
mjv

2

2
+ ejφ, (1)

where mj and ej are the mass and unit charge for par-
ticle species labeled j (= i, e for protons and electrons,
respectively), Ay and φ are vector and scalar potentials,
and c is the speed of light in vacuo.

Fu and Hau [20] constructed a single component equi-
librium particle distribution for each species, on the basis
of the κ distribution whose arguments are the above in-
variants. However, as we shall see, such a construction
leads to an unphysical result where the effective particle
temperature becomes infinite in the asymptotic regime
(z → ∞). To avoid such an outcome we thus consider
a stationary background population of particles in addi-
tion to the drifting components which carry the current
and are therefore responsible for maintaining the mag-
netic field reversal profile. We assume a simple gaussian
distribution for the background population. The particle
distribution is therefore given by

Fj(z,v) =
δ n0

π3/2 (2θj0/mj)3/2
exp

(
−Hj

θj0

)

+
(1 − δ)n0

π3/2 (2θj/mj)3/2

Γ(κ + 1)
κ3/2 Γ(κ − 1/2)

×
(

1 +
Hj − VjPyj + mjV

2
j /2

κ θj

)−κ−1

. (2)

The following velocity moments of the above distribu-
tion function are of particular interest:

nj =
∫

dv Fj = δ n0 exp
(
−ejφ

θj0

)
,

+ (1 − δ) n0

(
1 +

ejφ

κ θj
− ejVjAy

κ c θj

)−κ+1/2

,

nj 〈vy〉j =
∫

dv vy Fj = (1 − δ)n0Vj

×
(

1 +
ejφ

κ θj
− ejVjAy

κ c θj

)−κ+1/2

,

njTj =
mj

3

∫
dv (v − 〈v〉)2 Fj

= δ n0θj0 exp
(
−ejφ

θj0

)
+ (1 − δ)n0θj

× κ

κ − 3/2

(
1 +

ejφ

κ θj
− ejVjAy

κ c θj

)−κ+3/2

. (3)

In Eqs. (2) and (3), nj defines the average number den-
sity; 〈vj〉j signifies the average particle flow velocity pro-
file along the cross-field direction; and the quantity Tj

represents the effective kinetic temperature of the sys-
tem, which is related to the parameter θj0 and θj . With-
out the background population, that is, when δ = 0, it
will be shown later that Tj → ∞ as z2 → ∞.

Making use of the above velocity moments, one can
easily compute the electric charge density, ρ =

∑
j ejnj ,

and the cross-field current density, Jy =
∑

j ejnj 〈vy〉.
Inserting ρ and Jy to the quasi-neutrality condition ni ≈
ne and the y component of the Ampere’s law, one obtains

0 = δ
∑

j

ej exp
(
−ejφ

θj0

)

+ (1 − δ)
∑

j

ej

(
1 +

ejφ

κ θj
− ejVjAy

κ c θj

)−κ+1/2

, (4)

d2Ay

dz2
= −4π

c
(1 − δ) n0

∑
j

ejVj

×
(

1 +
ejφ

κ θj
− ejVjAy

κ c θj

)−κ+1/2

. (5)

Equations and (4) and (5) reduce to those considered in
Ref. [20] if we set δ = 0, and trivially satisfy Eq. (4)
by making the choice Vi/θi = −Ve/θe and by assuming
φ = 0. By contrast, we shall be interested in the finite δ
within the range 0 < δ < 1. A further generalization of
Ref. [20] is to permit Vi/θi to be generally different from
−Ve/θe [21]:

Vi

θi
�= −Ve

θe
. (6)

Once we invoke Eq. (6), it is no longer possible to ig-
nore Eq. (4), but instead, one must solve φ from Eq. (4).
The exact analytical solution is not forthcoming, but if
we are interested in a weakly charge current sheet, satis-
fying the condition

eφ

θi
	 1, (7)

then the electrostatic potential can be solved in an ap-
proxmate manner:

Ψ ≡ eφ

Ti
=

{
δ

1 − δ

θi0 + θe0

θe0
+

κ − 1/2
κ

×
[(

1 +
2Y

κ

)−κ−1/2

+
1
τ

(
1 +

2Y

κUτ

)−κ−1/2
]}−1
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×
[(

1 +
2Y

κ

)−κ+1/2

−
(

1 +
2Y

κUτ

)−κ+1/2
]

, (8)

where

τ =
θe

θi
,

U =
Vi

|Ve|
,

Y = −eViAy

2cθi
. (9)

Having obtain the electrostatic potential Ψ in terms of
the vector potential Y , we now insert Ψ to Eq. (5), which
is expressed in dimensionless form as

d2Y

dZ2
=

1
1 + τ

[(
1 +

Ψ
κ

+
2Y

κ

)−κ+1/2

+
1
U

(
1 − Ψ

κτ
+

2Y

κUτ

)−κ+1/2
]

, (10)

where

Z =
z

L
,

L =
cθi

eVi

√
2π(1 − δ)n0 (θi + θe)

. (11)

Equation (10) reduces to the simple equation derived
in Ref. [20],

d2Y

dZ2
=

(
1 +

2Y

κ

)−κ+1/2

, (12)

if we consider U = 1/τ and Ψ = 0. This equation is a
particular example of a generic class of equations

d2w

dx2
= wm,

which has a formal analytic solution in parametric form
[20, 22],

x = ±
∫ (

2
m + 1

wm+1 + C1

)−1/2

dw + C2,

if m �= −1 and

x = ±
∫

(2 ln |w| + C1)
−1/2

dw + C2,

if m = −1. Reference [20] employs the above parametric
solution. However, since the w integral must be per-
formed by numerical means, the formal analytic solution
of Eq. (12) in parametric form considered in Ref. [20] of-
fers no intrinsic advantage over the direct numerical so-
lution of the original differential equation (12). Besides,
when Uτ �= 1 and Ψ �= 0 in general, the coupled equa-
tions of interest to us, namely, (8) and (10), do not even

enjoy a formal solution. Therefore, in the subsequent
section, we solve Eqs. (8) and (10) by a direct numerical
approach.

In terms of the normalized variables (9) and (11), the
velocity moments (3) can be expressed as

ni

n0
= δ (1 − Ψ) +

1 − δ

(1 + Ψ/κ + 2Y/κ)κ−1/2
,

ne

n0
= δ

(
1 +

Ψ
τ

)
+

1 − δ

(1 − Ψ/κτ + 2Y/κUτ)κ−1/2
,

ni

n0

〈vy〉i
Vi

=
1 − δ

(1 + Ψ/κ + 2Y/κ)κ−1/2
,

ne

n0

〈vy〉e
Vi

= − 1
U

1 − δ

(1 − Ψ/κτ + 2Y/κUτ)κ−1/2
,

ni

n0

Ti

θi
= δ

θi0

θi
(1 − Ψ)

+
κ

κ − 3/2
1 − δ

(1 + Ψ/κ + 2Y/κ)κ−3/2
,

ne

n0

Te

θi
= δ

θe0

θi

(
1 +

Ψ
τ

)

+
κ

κ − 3/2
1 − δ

(1 − Ψ/κτ + 2Y/κUτ)κ−3/2
. (13)

III. NUMERICAL EXAMPLES

As a first example of the numerical solution, we choose
the following set of input parameters:

δ = 0,

Uτ = 1, (14)

and vary κ. This situation is exactly the same as that
considered in Ref. [20]. For the above set of input pa-
rameters one can easily see that

ni = ne,

Vi/θi = −|Ve|/θe,

φ = 0. (15)

Note that

dY

dZ
=

Bx√
8πn0 (θi + θe)

. (16)

Shown in Fig. 1 are normalized B-field and density
profiles for κ = 2, 3, 5, 10, and ∞. The result is iden-
tical to that of Ref. [20]. For the present situation, the
cross-field drift speeds for ions and electrons are uniform
across the current sheet. It is interesting to note that
the asymptotic magnetic field strength dY/dZ|Z→∞ is
not unity.

Let us consider the temperature profile [see Eq. (13)].
The result is shown in Fig. 2, which shows that the global
temperature profile indefinitely increases as Z2 increases.
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FIG. 1: Normalized B-field and density profiles, dY/dZ and
nj/n0, respectively, for κ = 2, 3, 5, 10, and ∞. The case of
κ = ∞ corresponds to the gaussian limit, shown here with
the dots.

-5 0 5
0

2

4

6

8

10

Z

T
em

pe
ra

tu
re

κ = 2

κ = 3
κ = 5

κ = 10

κ = ∞

FIG. 2: Global ion temperature profile for κ = 2, 3, 5, 10,
and ∞. The electron temperature profile is the same as that
of the ions except that it is scaled with a factor τ = θe/θi.

Clearly such a feature is not physical. To remedy the sit-
uation, we next consider a finite background component.

We consider the same set of input parameters as in
Fig. 1, and the variation of the background density, δ.
For the sake of simplicity, let us focus on the κ value cor-
responding to κ = 3. As noted, we still restrict ourselves
to the zero electrostatic potential by assuming Uτ = 1.
For the sake of further simplicity, we also consider that
θi0 = θe0 = θi. Thus, the input parameters are

κ = 3,

Uτ = 1,

θi0 = θe0 = θi. (17)

Shown in Fig. 3 is the global ion temperature profiles for
δ = 0.2, 0.4, 0.6, and 0.8. The presence of the background
significantly modifies the global temperature profile, as
shown by Fig. 3. The temperature profile no longer in-
definitely increases as one moves away from the neutral
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FIG. 3: Global ion temperature profile for κ = 3 when there
is a finite background population, as indicated by finite δ.

sheet, but instead, after the initial rise, it reaches a maxi-
mum and then settles down to an asymptotic value. This
shows that the presence of the background component is
essential from the standpoint of physics when one at-
tempts to model the current sheet with a κ distribution,
even though from a purely mathematical point of view,
the solution given in Ref. [20] is legitimate.

The present current sheet model is also capable of de-
picting a slightly charged current sheet, and the embed-
ded current sheet structure. If we allow the condition Uτ
to deviate from 1, then the electrostatic potential Ψ �= 0
becomes finite, and the ion and electron drift speed pro-
file no longer takes on the same functional form. In the
case of the gaussian current sheet model, a similar dis-
cussion was provided in Ref. [21]. The present discussion
generalizes Ref. [21] to the case of κ distribution. In the
next numerical example, let us consider the following set
of input parameters:

κ = 3,

δ = 0.5,

θi0 = θe0 = θi,

τ =
θe

θi
= 0.5,

U =
1
τ

+ E , (18)

where E is unrestricted if it is positive, and 0 < |E| <
1/τ in the case of the minus value. The case of E = 0
corresponds to the charge-neutral current sheet free of
electrostatic potential.

Shown in Fig. 4 are two case of E corresponding to
E = −0.5 and E = −1.5. The negative E implies em-
bedded electron current layer within thicker ion current,
while E > 0 implies the opposite. The embedded elec-
tron current sheet structure is not apparently obviously
in the case of E = −0.5, but for E = −1.5 (note that |E|
cannot exceed 1/τ = 2) the narrow electron current layer
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FIG. 4: Embedded current sheet for E = −0.5 (top) and
E = −1.5 (bottom). In the bottom panel, the embedded
electron current layer within the thicker ion current is plainly
obvious.
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FIG. 5: Electrostatic potentials across the current sheet for
E = −0.5 and E = −1.5.

embedded within the thicker ion current layer is plainly
seen.

The discrepancy in the electron and ion current pro-
files is maintained by an equilibrium electrostatic poten-
tial difference across the current sheet. Figure 5 plots
the corresponding electrostatic potential Ψ for the two
cases E = −0.5 and E = −1.5. For positive E , the sign of
the potential Ψ reverses (see Ref. [21] for more in-depth
discussion in the case of gaussian current sheet). In the
slightly-charged current sheet of the type presently dis-
cussed, the particles will experience E×B force in addi-
tion to the diamagnetic drifts. The additional cross-field
drifts of the particles may affect the stability of the cur-
rent sheet in a significant manner. For instance, Refs.
[23, 24] argue that an electromagnetic cross-field current
instability driven by the combined E×B and the diamag-
netic drifts might be highly relevant for the reconnection
onset.

Before we close, let us return to the issue of global tem-
perature profile. Figure 6 plots the ion and electron tem-
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FIG. 6: Ion and electron temperature profiles across the cur-
rent sheet for E = −0.5 and E = −1.5.

perature profiles across the current sheet for E = −0.5
and E = −1.5. As one can appreciate, the global temper-
ature profiles associated with the present charged current
sheet display physically proper characteristics in that
there is no divergence and that their asymptotic values
are finite.

IV. CONCLUSIONS

In the present paper we (re)derived current sheet equi-
librium solutions on the basis of the so-called κ distri-
bution functions for the particles. The purpose of the
present paper was to remedy a shortcoming in a recent
paper by Fu and Hau [20], where the authors formulated
the equilibrium current sheet model with the κ distribu-
tion for the first time. Although mathematically correct,
their model contains a peculiarly unphysical feature in
that the global temperature profile diverges in the asymp-
totic regime. The present paper has shown that such an
unphysical characteristics can be rectified if one assumes
a finite stationary background population of the parti-
cles. We further extended the analysis to allow the so-
lution to possess a feature in which the electron current
is embedded within a thicker ion current layer (or vice
versa), and where there exists a weak electrostatic po-
tential drop across the current sheet. The potential sig-
nificance of the embedded/slightly-charged current sheet
on the stability property was also discussed.
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