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Abstract 

 Passive end-body plasma contactors have been operationally validated in space and 

shown to provide a simple, effective and robust means of current collection at the positive 

terminal of an electrodynamic tether system.  A grid-sphere has been suggested as a possible end 

body since it potentially has distinct advantages compared to a solid sphere, including a lower 

neutral dynamic drag and a higher current-to-mass ratio.  This paper estimates the maximum 

current collected by a grid-sphere taking into account its orbital motion and ion production inside 

the grid-sphere.  We first review the data from the Tethered Satellite System (TSS-1) and the 

TSS-1R flights, formulate a model for current collection by a solid sphere, and suggest how to 

incorporate it into the grid-sphere current collection estimate. Then we calculate the potential 

distribution inside the grid-sphere and the potential distribution outside the solid sphere for the 

same system parameters. Finally we estimate the maximum current collected by a grid-sphere 

depending on its transparency.  
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1. Introduction 

There are a number of space applications for electrodynamic tether systems that require 

high current on the order of dozens of amperes for operation. Closure of the electric circuit of an 

electrodynamic tether necessarily requires an electrical connection between the tether’s positive 

electrode and the ambient ionospheric plasma, where the anode may take various forms.  It may 

be a spherical solid-surface conducting end-body that has been systematically studied for the 

TSS missions, or it may be the positively biased portion of the tether itself as was planned for the 

ProSEDS flight demonstration.  No matter what the geometry of the collection area might be, the 

collection, for example, of 10 amperes requires a large current collection surface on the order of 

1000 m
2
, because ionospheric thermal current is only about 10 mA/m

2
.  That is why there is a 

constant search for the most efficient and light end-body contactor. 

Passive end-body contactors have been validated in space and provide a simple, effective, 

and robust means of current collection at the positive terminal of an electrodynamic tether 

system.  Determination of the most effective type of contactor is primarily based on its current 

collection efficiency, dynamic drag, and mass.  Stone and Gierow [2001], Stone et al. [2002] 

have proposed a grid-sphere end-body with high transparency, about 90%.  They argue that such 

a design has distinct advantages, providing a large current collection area, low dynamic drag and 

high current-to-mass ratio.  Their preliminary results regarding the grid-sphere performance, 

based on a calculation of the current collection for cylindrical and spherical bodies, suggest that 

it may be a simple and reliable means of developing large tether currents,  unencumbered by 

high power requirements, hot filaments, expendables, and the complex electronics associated 

with existing active contactor devices. 
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Their analysis of current collection for a grid-sphere assumed that there is no positive 

charge inside the sphere and neglected the tether system orbital motion.  The motion, as known 

from the results of the TSS-1 and TSS-1R missions, substantially increases the current collected 

by a solid sphere [Wright et al., 1996; Thompson et al., 1998].  We present below a calculation 

of the maximum current collection by a grid-sphere taking into account the orbital motion, as 

well as the ion production from ionization of neutrals by incoming energetic electrons inside the 

grid-sphere.  The paper is organized as follows:  Section 2 reviews the current collection of TSS-

1 and the TSS-1R flights, and presents a model for solid sphere current collection; Section 3 

describes the potential distribution formation inside the grid-sphere; Section 4 suggests how to 

incorporate the results of Sections 2 and 3 into the grid-sphere current collection studies and 

calculate the upper bound for this current; and Section 5 summarizes the results. 

  

2. Model for a Solid Sphere Current Collection 

One of the major goals of the TSS-1 and TSS-1R flights was to study the electron current 

collected by a solid-sphere subsatellite at a large positive voltage with respect to the surrounding 

plasma.  During both flights, the subsatellite’s current collection was observed to be in excess of 

the values predicted by Parker and Murphy [1967] by a rough factor between 2 and 6, when the 

potential was between 20 – 1000 V positive with respect to the subsatellite’s surroundings.  Such 

an outcome was very surprising in view of the large mean electron thermal speed (212 km/s for 

the thermal energy ~0.1 eV), compared with their relative drift speed about 8 km/s due to the 

satellite’s orbital motion.  To explain these results, several theoretical approaches have been 

developed (Dobrowolny et al., 1995; Vannaroni et al., 1998; Katz et al., 1994; Laframboise, 

1997; Cooke and Katz, 1998; Ma and Schunk, 1998; Singh and Leung, 1998) that focused mainly 
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on the TSS-1 or TSS-1R observations.  In this section we present a model for solid sphere 

current collection based on these theoretical results and the experimental data from both TSS 

missions.  Using this model, we will estimate the maximum current collected by a grid-sphere. 

For a solid sphere contactor we assume that the region outside the sphere can be divided 

in two shells (Figure 1).  The inner region, starting from the sphere surface, is assumed to be 

spherically symmetric with a Boltzmann ion distribution and one-dimensionally accelerated 

electrons (Laframboise and Parker, 1973; Laframboise, 1997).  The outer boundary of this 

region, br , is the iso-potential surface that reflects the ion flux related to satellite motion 

(Laframboise, 1997; Cooke and Katz, 1998) and collects a current equal to the upper-limit 

current found by Laframboise and Parker [1973] for two-dimensional electron acceleration.  

According to Laframboise and Parker [1973], this current, collected in our model at the 

boundary of the first region, is: 

I

I0

=
1

π
rb

2

R
2 χb +

1

2 χb

 

 
  

 
                         (1) 

where R is the sphere radius, br  is the boundary radius, and kTe bb /ϕχ = is the normalized 

potential ( bϕ is the potential of the boundary, e is the elementary charge, T is the plasma 

temperature, and k  is the Boltzmann constant). The current is normalized 

to mkTenRI ππ 82

0 ∞= , the random electron current.  Here ∞n  is the undisturbed plasma 

density and it is assumed in expression (1) that the current is collected only by the leading ram 

hemisphere.  Following Cooke and Katz [1998] and Laframboise [1997], the potential at the 

boundary is set equal to the energy needed to reflect the ions, defined by the normal component 

of the ion velocity relative to the satellite and averaged over the sphere surface. So 

kTEib 3=χ where eV5≈iE is the ion kinetic energy. 
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To calculate the current from equation (1), the radius of the boundary, br , that separates 

the regions of one- and two- dimensional acceleration should be found. To calculate br ,
 
the 

Poisson equation in the region between the grid-sphere surface and the boundary has been solved 




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−= −χ
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χ

e
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dx

d
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dx
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e
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r
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The electron density here corresponds to the one-dimensional acceleration case (Laframboise 

and Parker, 1973) with 1>>χ , where Dλ is the Debye length.  At the outer boundary of this 

region, br , the electron density is chosen equal to the ion density, which because of ion reflection 

is set at  twice the undisturbed ion density (Laframboise, 1997). 

            To calculate the unknown radius br  from equation (2), a third condition is needed, which 

could be provided by the solution in the outer domain brr > .  Instead, we simplify the problem 

by assuming that the boundary br  between the regions of one- and two-dimensional acceleration 

can be identified as the position where the electric field abruptly drops and changes sign, 

indicating that further out the one-dimensional electron density distribution is not valid. As can 

be expected from equation (2), it is also the radius where the potential, χ , is close to zero. Such 

approach is partly justified by the results of the numerical simulations (Ma and Schunk, 1998; 

Singh and Leung, 1998), where two regions with different potential structure are observed, as 

well as by the agreement of our results presented below with experimental data. 

So the boundary radius, br , has been defined as the radius where simultaneously the 

potential is close to zero and the electric field abruptly drops and changes  sign.  Equation (2) has 

been solved numerically by starting from the sphere surface with the known potential and some 

potential first derivative. The potential first derivative on this surface was adjusted until the 
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radius defined above as the boundary has been found.  Outside this boundary the assumed 

density distribution is no longer applicable. We plot the normalized potential and the first 

derivative of this potential over the normalized length, Rrx /= , for 1000== kTe RR ϕχ and 

135=DR λ  in Figure 2.  As can be seen from this figure, the transition region near the boundary 

is very narrow and the boundary radius br  is easy to identify. The same holds true for all system 

parameters used in our calculations. To verify the model, such calculations have been performed 

on the set of system parameters for which experimental data are available.  Table 1 compares the 

results of these calculations with the data from TSS-1 (Dobrowolny et al., 1995) and TSS-1R 

(Vannaroni et al., 1998) missions for very different system parameters. As can be seen, the ratio 

of observed to calculated currents, cII , shows good agreement despite large variations in  

plasma density, temperature and sphere potential.  

Figures 3 and 4 plot the results of these calculations along with all the data from 

Dobrowolny et al. [1995] and Vannaroni et al. [1998].  Our Figure 3 reproduces Figure 2 from 

the first paper (TSS-1 mission) with the results of our calculations inserted as the red dots. The 

sphere potential and plasma parameters for these calculations, presented in Table 2, are taken 

from their Table 1. The measured temperature is 0.1 eV. The three curves in this figure 

correspond to three models of current collection: the Parker-Murphy model (P-M 1), the Alpert 

model (Alpert et al., 1965) and the Parker-Murphy model modified for sweeping effects of the 

velocity flow (P-M 2). Figure 4 reproduces Figure 1 from the paper of Vannaroni et al. [1998] 

(TSS-1R mission).  They compared their observed currents with that predicted by the Parker-

Murphy and Alpert models. Again, our results are added as red dots.  As can be seen from 

Figures 3 and 4, the results of our calculations are in reasonable agreement with the 

measurements except for a few low-voltage cases presented in Figure 4 panel (a), where the 
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measured current-voltage characteristic is quite different from all other measurements.  Our 

model predicts a current close to that of the Alpert model, which describes the current collection 

in an unmagnetized plasma. It should be noted that the results from the Alpert model shown in 

Figures 3 and 4 are obtained under the condition 3/4)/(/ DR RkTe λϕ ≥  (Dobrowolny et al., 

1995; Vannaroni et al., 1998; Alpert et al., 1965), which is not satisfied for  typical plasma 

parameters at altitudes about 300-400km for large sphere radii. For the system parameters of 

Figure 4(a), 24.0)/)(/( 3/4 ≤−
DR RkTe λϕ . According to the Alpert model, if this parameter is 

much less than one, the current should be constant, 5.10 =II , so, the Alpert model is not 

applicable.  For an electrodynamic tether drawing even few ampere, the radius must be so large 

as to make this parameter much smaller than 1, also rendering the Alpert model inapplicable.  

This is the situation that exists in the case of a grid-sphere that should have a large enough radius 

to collect a suitable current. 

The current collected by the solid sphere contactor (equation (1)) can be estimated for 

different system parameters with the help of Table 3, which tabulates the magnitude of the 

normalized boundary radii, Rrb , for the set of two dimensionless parameters, 

22

DR λ and kTe Rϕ  determining the solution of equation (2). As can be seen from Table 3 the 

boundary radius is inversely proportional to 22

DR λ which can be approximated as 

( ) ( )σλ 222
RRr Db ∝ with an accuracy of about 20%. The exponent σ  depends on the normalized 

potential of the sphere surface, e. g., 28.0,23.0,12.0=σ  for 433 10,105,10 ⋅=kTe Rϕ  

respectively. 

 We use this model to estimate the upper bound of the current collected by the grid-

sphere. 
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3. Potential Interior of the Grid-Sphere 

Following Stone et al. [2002], we assume that a grid-sphere is characterized by the 

transparency α, equal approximately to the ratio of the part of the sphere surface without mesh to 

its total surface.  Electrons accelerated by the grid-sphere potential penetrate inside the grid-

sphere and cause impact ionization of neutrals.  The secondary electrons produced by this 

process will be expelled quickly from the grid-sphere, but the ions will be kept inside it by the 

charge of the high energy incoming electrons.  The grid-sphere ion content depends on the rate 

of ion production, recombination, and their flux through the grid-sphere surface.  For an 

ionospheric altitude about 300km and above, recombination is slow compared to the ionization 

rate and can be neglected, as can be seen from a following simple estimate. 

The main neutral components at this altitude are molecular nitrogen, and atomic oxygen.  

We can assume that the ionization cross-section due to collisions with the energetic electrons for 

all of these components is of the same order of magnitude. The ions of atomic oxygen have the 

longest lifetime at this altitude, which is determined by ion-molecular reactions of O
+
 with 

nitrogen neutral molecules [Schunk and Nagy, 2000].  This lifetime is sec1000~ltt .  Other ions, 

produced by collisions with fast electrons, are neutralized on a shorter timescale; so their 

contribution is about five times smaller and will be neglected.  The number of oxygen ions 

produced per unit volume per second by ionization is jNOσ , where σ  is the cross-section for 

impact ionization, ON  is the atomic oxygen density, and j is the electron flux density.  In quasi-

static equilibrium, the ionization and recombination processes balance, which can be written as 

ltiO tnjN /=σ , where in is the oxygen ion density.  For 220 m10−=σ , 314 m105 −⋅=oN , and 

thermal electron flux mkTnj π2/∞= , this leads to an oxygen ion density more than two orders 
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of magnitude larger than the  density of the undisturbed plasma, ∞n , for particle energies 

eVkT 1.0~ , as can be seen from their ratio mkTNtnn olti πσ 2/=∞ .  Therefore, the role of 

recombination is negligible, and the ion content of the grid-sphere is determined by the balance 

between oxygen ion production and their flux through the grid-sphere surface. 

In contrast to the ions, the density of the locally produced secondary electrons will be 

much smaller than the density of penetrating electrons. The secondary electron production rate 

inside the grid-sphere is roughly equal to the grid-sphere volume multiplied by the electron 

density production rate, which is approximately the same as for ions, jNOσ . The flux of the 

secondary electrons through the grid-sphere surface is sjR
24π , where the grid-sphere radius is R , 

and sj is the secondary electron flux density. In equilibrium the production and losses should be 

equal, sO jjNR ~σ .  Since the energy of the incoming electrons is defined by the grid-sphere 

surface potential, Rϕ , this equilibrium becomes  nnKeNR ssRO ~ϕσ , where sK and sn are 

the kinetic energy and density of a secondary electrons, and n is the density of incoming 

electrons. The energy ratio is 5020~ −sR Keϕ  for impact ionization of the oxygen atoms, if 

the grid-sphere surface potentials are in the range 100 - 1000V.  For the grid-sphere 

radius mR 10~ , usingσ and oN from the previous estimate, nns  is less than 0.001 justifying 

our neglect of the secondary electrons in the calculations below. 

To calculate the potential distribution inside the grid-sphere the electron and the ion 

densities are needed.  The ionized neutrals have a large velocity relative to the grid-sphere 

compared to their thermal velocity because of the grid-sphere orbital motion. In the coordinate 

system that is attached to the grid-sphere, ions are born with a velocity of about 8 km/sec, giving 

them a transit time through the grid-sphere of about msec11.0 −  for grid-sphere radii in the 
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range of 1-10m.  Because of the large interior scale of the grid-sphere compared to the Debye 

length, it can be expected that in equilibrium most plasma inside the grid-sphere will be quasi-

neutral, at least for large sphere radii and dense plasma.  Maintaining quasi-neutrality inside the 

grid-sphere requires that the ions be quasi-trapped with a characteristic time that can be 

estimated assuming equal densities of ions and electrons penetrating the sphere.  The time 

needed to produce an ion density ni ~ ne  with an ionization rate σNO j  is tpr ~ ne / σNO j , which is 

the characteristic time to replenish the ion population.  With an electron velocity Rev ϕ∝  for 

high grid-sphere surface potential, Rϕ , this time can be rewritten as [ ] kTeCt Rpr ϕ/~sec , 

where the constant C is about 1sec for the particle parameters used above.  This is also the 

characteristic time that the ion should be kept inside the grid-sphere to maintain plasma quasi-

neutrality.  Since this time is much longer than the transit time, even for high grid-sphere 

potentials, the newborn ion must experience multiple reflections before leaving the grid-sphere. 

Therefore a potential well inside the grid-sphere must exist. 

          The newborn ions can be described by a shifted Maxwell-Boltzmann distribution function 

describing particles in the presence of conservative force field, 

( ) ( ) ( ) 






 −−−== 20
00 exp,,0 svv

kT

re
Cvrtf

rr
r

rr ϕ
         (3) 

Here   
r 
v s  and   

r 
v  are the satellite and ion velocities normalized by MkTvT /2= , M  is the mass 

of the oxygen ion, and )( 0r
rϕ  is the potential at the point where the ion is born (Figure 1).  Due to 

multiple reflections inside the well the equilibrium distribution should be nearly isotropic in 

velocity space on a timescale long compared to the transit time. It means that the angle-

dependent part of the distribution (3) vanishes for times longer than the transit time, which is 

also the time between ion “collisions” with the potential wall, leaving only the isotropic part.  
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This isotropic part can be found as the angle-independent term of the function (3) when 

expanded in spherical harmonics in configuration and velocity space, or by averaging this 

function over all angles.  Therefore the distribution function averaged over the oscillations in the 

well, which randomize the momentum but conserve the energy, will depend only on the distance 

from the center of the grid-sphere, rr
r= , and the ion speed v=  

r 
v .  The angle-averaged part, 0f , 

of the initial distribution (3) is 

( ) ( ) ( )( ) ( )
s

vvr

s

vve
vv

C
vrtf s 2sinh

2
,,0

22
00

00

+−−== χ
                     (4) 

The dependence of this distribution on vr ,0  is independent of time so for times larger than the 

transition time, trt , the function is the same within a normalization 

constant, ( ) ( )vrtcfvrttf tr ,,0,, 0000 ==> . 

 Equation (4) presents the velocity dependence of the ion distribution at the location 0r , 

where the particles are produced by ionization. At the location r  the ion distribution can be 

found as the solution of the kinetic equation. Because the quasi-static distribution function is 

angle-independent in configuration as well as in velocity space, the kinetic equation reduces to 

0
v

f
v =

∂
∂−

∂
∂ f

dr

d

M

e

r

ϕ
. The solution of this equation depends on the ions energy integral and can 

be obtained from equation (4) by setting ( ) ( )[ ] kTrrevv 0

2 ϕϕ −+→ , which can be checked by 

substituting directly into the kinetic equation. 

As previously mentioned, there are two length scales in the electrostatic problem of grid-

sphere interior potential calculation: the Debye length, and the size of the grid-sphere.  Because 

the grid-sphere size is much larger than the ionospheric Debye length, it can be expected that the 

main part of the ion population is born in the quasi-neutral region with a potentialϕ0 , or where 



 13 

the potential is close to this value.  Neglecting the small term with the negative power in 

( )
svv2sinh  of equation (4), the ion distribution can be written as 

f r,v( ) =
C

u
exp − u − vs( )2( ), ( )( )0

2 , ϕϕχχ −=∆∆+= r
kT

e
vu          (5) 

The constant C  of this steady-state distribution can be found from the balance between 

ion production inside the grid-sphere and ion flux through the grid-sphere surface.  Assuming 

that the potential drop inside the grid-sphere is small compared to the grid-sphere surface 

potential accelerating the electrons, and that the approximately neutral region is large, the radial 

dependence of the electron flux density, j , can be neglected.  So the balance between ion 

production and loss through the grid-sphere surface can be written, 

( )∫= 3423 ,4
3

4
dvvvRfvRjNR nTo πασπ                                           (6) 

where vn is the ion velocity component normal to the grid-sphere surface. The calculation of ion 

flux density on the right-hand side of the expression (6) is presented in the Appendix, (A1) and 

(A2). The normalization constant,C , in the ion distribution (5) can be expressed using equation 

(6) and the result is 

                       
),(3

2
4

RsT

o

vv

NRj
C

χπ
σα

∆Γ
= , ( )0ϕϕχ −=∆ RR

kT

e
                                               (7) 

where ϕ R  is the potential of the grid-sphere surface, 0ϕ  is the potential at the point where the ion 

is produced, and ),( Rsv χ∆Γ is defined by equation (A2). 

So the ion density can be found by integration of the distribution function (5), and (7) 

over the velocity v
r

. The domain of integration in velocity space is restricted by the condition that 

the ion kinetic energy should be smaller then the depth of the potential well. The ion density 

calculations are presented in the Appendix. It is found (A5) that  
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                                  ( ) ( ) ( ) ( )[ ]RssT vvCvrn χχπ ∆Ψ−∆Ψ= ,,2
3

                                           (8) 

with the coefficient C  defined by equation (7).  

To calculate the density of the penetrating electrons we assume a one-dimensional 

acceleration inside the grid-sphere. This assumption has been used by Laframboise [1997] in the 

model of current collection for the region just outside the solid surface and in our model for 

current collection presented in Section 2.  As shown above, the results from this model are in 

reasonable agreement with the experimental data from the TSS-1 and TSS-1R missions. We 

expect that the potential drop inside the grid-sphere is small compared to the grid-sphere surface 

potential.  If the electric field near the surface inside the grid-sphere is comparable to the electric 

field outside it, the character of the density distribution will also remain close to the character of 

the density distribution outside the grid-sphere surface. It is in this inner region near the grid-

sphere surface that the main part of the total inner potential drop, ∆χ R, takes place.  Deeper 

inside, and farther from the surface, the change of potential is small and therefore the same will 

be true for the density, taking into account that the potential drop, ∆χ R, is small compared to the 

electron energy.  Then the electron density into the sphere can be written, 

ne = αj
m

2eϕ r( )             (9) 

where the potential can be expressed using ∆χ  and ∆χ R from equations (5) and (7) 

( ( ) ( )RR kTere χχϕϕ ∆−∆+= ). Equating the ion density (8) to the electron density (9), and 

setting ∆χ  equal to zero, the quasi-neutrality condition can be written 
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where the values of Γ  and Ψ are defined by equations (A2) and (A5) respectively.  As can be 

seen from this equation, the depth of the potential well, ∆χ R,  for fixed values of electron 

temperature and neutral particle density, depends only on the satellite velocity and the grid-

sphere potential, but not on the grid-sphere transparency.  The left-hand side of equation (10) is 

the product of two terms:  the ratio of the grid-sphere size to the electron free path between 

ionization collisions; and a term primarily dependent on the grid-sphere potential. It was found 

that the well depth,∆χ R, is inversely proportional to the magnitude of these dimensionless 

parameters, so that for larger parameters the depth is smaller.  This depth is of the same order of 

magnitude as the kinetic energy of the oxygen ion motion relative to the satellite (~5eV).  For the 

combination of 5106 −⋅=RNoσ  and grid-sphere potentials 100V and 1000V, the well depth is 

5.7V and 4.9V respectively, while for 6105 −⋅=RNoσ the potential drops are 7.2V and 6.6V.  If 

the parameter σNo R changes from 5106 −⋅  to5 ⋅10
−6

, for a grid-sphere potential of 500V, the well 

depth changes from 5.2V to 6.8V.  

 These magnitudes for the potential well are calculated using equation (8) for the ion 

density obtained with the help of the mathematical approximation (A5) discussed in the 

Appendix. While these results are needed for the self-consistent calculation of the potential 

distribution inside the grid-sphere presented below, the depth of the potential well can also be 

calculated using the exact ion density (A4) from the Appendix. The difference in the depth of the 

potential well from both calculations is less then 10%, i. e. the same order as the accuracy of the 

mathematical approximation used in the ion density calculations, as discussed in the Appendix.   

We assumed above that in most of the grid-sphere interior, the potential is close to the 

potential determined by neutrality, and the electric field near the grid-sphere surface is large.  If 

either assumption does not hold, the expressions for the ion and electron densities are not valid. 
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To check these assumptions and to calculate the potential distribution,∆χ , inside the grid-sphere 

the Poisson equation should be solved.  With the densities defined by equations (7)-(9) this 

equation can be presented as 

( ) ( )
( ) 














∆Γ
∆Ψ−∆ΨΠ−

∆−∆+
Π=∆

Rs

Rss

RR
v

vv

dx

d
x

dx

d

x χ
χχ

χχχ
χ

,

,,11
21

2

2
,                   (11) 

R

r
xRN

m

M

M

m

vn

jR

TD

==Π=Π
∞

,
3

4
, 022

2

1 σπα
λ

 

where the first term on the right-hand side is the electron density and ( )Rrx /=  is the radial 

coordinate r  normalized to the grid-sphere radius R .  Fixing both the potential well depth, ∆χ R , 

calculated from the quasi-neutrality condition, and the potential on the grid-sphere surface Rχ , 

we vary the derivative at the grid-sphere surface until at some point inside the grid-sphere both 

the potential and its derivative become zero.  Equation (11) has been solved for the grid-sphere 

potentials 100V, 500V, and 1000V for 75

1 105.1,109 ⋅⋅=Π ; and 0243.0,002.02 =Π , which for 

a grid-sphere with radius 10m are approximately the maximum and minimum values of 21, ΠΠ  

at altitudes of 300-500km and thermal energy 0.1eV.  We chose a flux density j  roughly equal 

to the Parker-Murphy limit.  Figure 5 plots the solution of equation (11) for the grid-sphere 

potential 500V and 21, ΠΠ  parameters listed above.  As can be seen from this figure, the 

potential distribution strongly depends only on parameter ,1Π and in particular, on the electron 

Debye length. For denser plasma, i.e. for larger parameter 1Π , the region where the potential is 

close to quasi-neutral is also larger. The dependence on parameter 2Π and, therefore, on the 

oxygen neutral density is slight.  The same dependence on the parameters 21, ΠΠ  holds for the 

grid-sphere surface potentials of 100V and 1000V. Figure 6 plots the dependence of the 
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potential distribution on the grid-sphere surface potential, holding parameters 21, ΠΠ  fixed. As 

can be seen from Figures 5 and 6, even in the case where the potential changes more gradually, 

most of the grid-sphere interior has a potential close to neutrality. This validates the assumption 

above that ions are born mostly in the region where the potential is close to the potential of a 

quasi-neutral plasma. The extent of this region depends primarily on the parameter 1Π , and 

therefore on the plasma density.  For the system parameters considered above, the density is 

high enough to create such a region.  In this sense the plasma is dense, as has been initially 

assumed. The potential distribution presented by these figures is also consistent with the 

assumption that the potential drops near the grid-sphere surface and that the electric field in this 

region is strong, supporting the choice of the electron density distribution.  

   We calculated the depth of the potential well for system parameters such that the main 

ion population is produced in the region where the potential is close to quasi-neutral. This 

simplifies the calculation of the ion density, because the potential ( )0rϕ  in distributions (3)-(5) is 

constant for all particles, but if this region is small this simplification fails.  Because the depth of 

the potential well is defined by the balance between ion production and loss through the grid-

sphere surface, smaller production rates deepen the potential well and shrink the quasi-neutral 

region. This can be seen in Figure 5, where smaller production rates correspond to smaller 

parameter 2Π  in equation (11). As can be seen from distribution (5) for the satellite velocity 

31.7=sv , a well depth of about 10V will confine practically all produced ions so reducing the 

ion production rate only shrinks the quasi-neutral region. Therefore as long as a quasi-neutral 

region exists inside the grid-sphere, the depth of the potential well will be about the same order 

of magnitude as found in the calculations above. 
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   While a solid sphere contactor collects current only in the ram hemisphere, a grid-sphere 

collects current in both. Since the potential well inside the grid-sphere is small compared to the 

energy of the electrons accelerated by the grid-sphere surface potential, the electrons should be 

able to cross and leave the grid-sphere interior through the wake hemisphere if they do not 

intersect the mesh. These electrons will be attracted back by the grid-sphere potential, and may 

add to the collected current. 

 

4. Region outside the Grid-Sphere and Grid-Sphere Current Collection 

We now use the model developed above to estimate an upper bound for the current 

collected by the grid-sphere.  First we return to the assumptions of solid sphere current collection 

presented in Section 2 and discuss to what degree they are applicable to a grid-sphere.  We 

assumed that a positively charged sphere should reflect the incoming ions, so that the potential of 

the reflecting region is determined by the satellite orbital velocity. Clearly this potential should 

be independent of the sphere transparency and as valid for the grid-sphere as for the solid one.  

We did not consider the structure of this region, but assumed that the boundary of this region 

collects the upper-limit current in magnetized plasma, calculated according to Laframboise and 

Parker [1973].  This is still consistent with our goal of estimating the maximum collectable 

current. Neglecting the structure of the region where the incoming ions are reflected, we also 

assumed elastic reflection, and that the ion density at the inner boundary is twice the undisturbed 

ion density.  Further, we assumed that the electron density at this boundary equals the ion 

density, due to the supposition that the plasma is close to neutral. These assumptions hold also 

for the grid-sphere, but now the electron density at the boundary will include a contribution from 

the flux passing through the grid-sphere.  It is less clear how the grid-sphere transparency will 
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affect the electron density distribution that has been assumed for the region between the ion 

reflecting boundary and the sphere surface in equation (2) and, therefore, the radius of the 

current collecting boundary in equation (1).  We do not think that the electron distribution will 

change drastically, however, for the following reasons.   

As can be seen from Figures 3 and 4, the results from the Alpert model are close to the 

experimental data, where the model assumes a solid sphere at rest in plasma without a magnetic 

field. Alternatively it is known (Alpert et al., 1965) that under the same conditions, the potential 

distribution around a charged sphere is strongly affected by particle reflection from the body 

surface only if the reflection is very close to perfect, lRq /1 <<− , where q is the reflection 

coefficient and l is the particle free path.  For the grid-sphere there also exists a flux from the 

sphere surface that could be considered, at least qualitatively, as the flux of reflected particles 

with a “reflection coefficient” roughly equivalent to the grid sphere transparency.  Since the 

inequality above is not satisfied, we expect that the character of the potential distribution given 

by the Alpert model will not change dramatically if applied to a grid-sphere.  Because the results 

of our calculations and the results of the Alpert model agree with the data for a variety of plasma 

densities and potentials where the condition 3/4)/(/ DR RkTe λϕ ≥  holds, we expect that our 

choice of the electron density distribution, verified for a solid sphere, is also valid for a grid-

sphere.  Therefore, to estimate the maximum current collected by a grid-sphere, we calculate the 

current collected by a solid-sphere for the same system parameters, and assume that the current 

collected by a grid-sphere is equal to this current times the opacity, the probability the electron 

collides with the mesh before leaving the interaction region. According to Section 3, electrons 

are one-dimensionally accelerated by the grid-sphere surface potential, but their density is 

approximately isotropic inside the grid-sphere. The electron penetrates inside the grid-sphere 
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with a probability equal to the grid-sphere transparencyα . We assume that this electron can 

reach either the ram or the wake hemisphere from inside the grid-sphere with equal probability, 

1/2. If the electron intersects the ram hemisphere it can escape the region of interaction with a 

total probability equal to the product of the probability to enter the grid-sphere, α , the 

probability to reach the ram hemisphere, 1/2, and the probability to exit through the mesh, α , i.e. 

with total probability 22α . This is also the probability that the electron will be found in the 

wake hemisphere. To estimate an upper limit for the collected current, we assume that if the 

electron after the first passage exits in the wake region alone it is attracted back by the grid-

sphere, intersecting the grid-sphere surface two more times before finally leaving the interaction 

region. The probability that the electron will return from the wake region inside the grid-sphere 

is the product of the probability to reach the wake region, 22α , calculated above, and the 

probability to avoid the mesh twice, 2α , i.e. 24α .  As the result, an electron is able to intersect 

the region of interaction and escape into the surrounding plasma with the 

probability 22 42 αα + . So, for this scenario the collected current is 

                                   ssgs II 







−−≈

22
1

42 αα
          (12) 

Here gsI is the current collected by the grid-sphere, and ssI  is the current collected by the solid 

sphere.    The normalized current 0/ II ss  for a solid sphere with radius 10m for typical plasma 

densities and particle thermal energy 0.1eV is presented in Table 4 in the two first rows.  With 

the help of this ratio and equation (12) for the grid-sphere for a given transparency and potential, 

the collected current can be estimated.  In Table 4 this current is presented in the two last rows in 

amperes where the transparency is taken to be 90%. 
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5. Discussion and Conclusions 

In this paper we have estimated the maximum current that can be collected by a grid-

sphere. This calculation takes into account the orbital grid-sphere motion and ion production 

inside the grid-sphere due to impact ionization by incoming electrons accelerated by the grid-

sphere surface potential. These two processes lead to the formation of a small potential well 

inside the grid-sphere.  For grid-sphere potentials of 100V and 1000V, the well depth has been 

found to be in the range of 5V to 7V, respectively.  So the depth of this potential well is 

comparable to the energy of the ions born inside the sphere, which is defined by the relative 

velocity between the neutrals and the satellite.  Such a small potential drop means that the 

electron motion inside the grid-sphere will be only slightly affected by this electric field.  

Electrons will crossover the grid-sphere interior and some fraction of uncollected electrons 

penetrating the ram hemisphere will leave the grid sphere through the wake hemisphere.  These 

electrons will be attracted back by the grid-sphere potential and will additionally intersect the 

grid-sphere surface. So the effective opacity of the grid-sphere will be higher than that defined 

by the mesh transparency and a larger current can be collected. 

We base this estimate of the grid-sphere current collection on the proposed model of the 

current collection by a solid sphere contactor. Results of the TSS-1 and TSS1R sphere contactors 

demonstrated that the collected currents differ significantly from that predicted by the Parker-

Murphy model (Parker and Murphy, 1967) as can be seen in the Figures 3 and 4. So this model 

has been modified by different authors taking into account the satellite motion, ion reflection, 

and higher electron temperatures observed in the experiment. The results obtained by 

Dobrowolny et al., [1995] (Figure 3) and Laframboise [1997] with these modifications are in a 

good agreement with the observations of the TSS-1 mission. The curve in Figure 10 in his paper 



 22 

is very close to the carve P-M 2 in Figure 3.  When Laframboise [1997] compared his model 

with the preliminary results from the TSS-1R flight, he concluded that the model needed further 

modification. Good agreement with TSS-1R data has been found by Cooke and Katz [1998], but 

they did not discuss the currents collected by the TSS-1 mission. Data from both flights have 

also been compared with the prediction for the collected currents from the Alpert model (Alpert 

et al., 1965) for unmagnetized plasma and contactor at rest by Dobrowolny et al. [1995] and 

Vannaroni et al. [1998]; which  agree with the measurements (Figure (3) and (4)) only if the 

inequality 3/4)/(/ DR RkTe λϕ ≥  is valid.   

The main components of our model (reflection of incoming ions, potential and density 

distribution in this reflecting region, one-dimensional electron acceleration near the sphere 

surface, upper-limit for current collection in the magnetic field) have been discussed in a number 

of studies, in particular related to the TSS-1 and TSS-1R missions (Laframboise and Parker, 

1973; Laframboise and Sonmor, 1993; Dobrowolny et al., 1995; Vannaroni et al., 1998; Katz et 

al., 1994; Laframboise, 1997; Cooke and Katz, 1998; Ma and Schunk, 1998; Singh and Leung, 

1998).  The modification we propose is based on the assumption that the current collecting 

region can be divided in two parts: an outer region collecting the upper-limit current permitted 

for two-dimensional electron acceleration, and an inner region where the electron density 

distribution is determined by one-dimensional acceleration.  The boundary between these two 

regions is approximately defined as the point where the electric field abruptly changes. This is 

the element that has not been used in previous models. The approach appears to be reasonable, 

and the currents calculated from our model are in good agreement with the currents measured by 

the TSS-1 and TSS-1R missions.  So, it can be hypothesized that this boundary between the two 

regions of disturbed plasma near a solid body, as introduced in the model, is a robust 
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characteristic of the process of current collection, at least for high enough (> 20V) sphere 

potentials.  

We can use this estimate of the maximum current collected by a grid-sphere to compare 

the advantage of such an anode design for mass and drag reduction. The drag force, caused by 

collisions with neutrals, is proportional to the grid-sphere surface solid fraction multiplied by 

two, because of the interaction with the outer surface of the ram hemisphere and the inner 

surface of the wake hemisphere.  So 

( )
ssgs FF α−= 12                                                               (13)    

where: gsF  and ssF  are the friction forces acting on the grid-sphere and the solid sphere 

respectively. From equations (12) and (13) it follows that the drag per unit of collected current 

for a grid-sphere with a transparency of 80-95% is approximately 1.2-1.4 times smaller than for a 

solid sphere with the same radius, while the gain in the mass per unit current is 2.4-2.8 times. We 

can also compare these two anode designs at a fixed current. Since the current collected by a 

solid sphere depends on the sphere radius as σ22 / RRI ss ∝ , where σ  is defined only by the 

sphere potential (Section 2), equating the currents (equation (12)) gives their radii as 

                                                   
( )12

1
42

22
1

−









−−=

σαα
ss

gs

R

R
                                                        (14) 

The mass and drag ratios for these anodes are 

                                         ( )
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F
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R

R

M

M
2,1

2

=−







= α                                                 (15) 

and for the range of parameters presented in Table 4 these ratios have a well expressed minimum 

as a function of the grid-sphere transparency α . For normalized grid-sphere potentials in the 

range 43 1010 −=kTe Rϕ this minimum corresponds to the range of 



 24 

transparencies 76.09.0 −=α , with corresponding mass ratios 56.045.0 −=ssgs MM , and a drag 

ratio of about one. Of course the anode designs should be compared taking into account specific 

mission requirements, such as the needed current.  
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Appendix 

 1. The normalization constant, C , in the ion distribution function (5) has been  calculated from 

equation (6).  The ion flux density through the grid-sphere surface on the right-hand side of this 

equation in spherical coordinates in velocity space is 

                         ( ) ( )
∫ ∫ ∫∫

∞
−−==

2

0 0

2

2

0

3
2cos

sin,

ππ ϑϑϑφ dvve
u

v
ddCdvvvRfI svu

n                                          (A1) 

where ( )
RvRu χ∆+= 2

, and ( ) kTe RR 0ϕϕχ −=∆  is the normalized potential drop between the 

grid-sphere surface ( Rϕ ) and the neutral region  ( 0ϕ ). The result of the integration (with the change 

from the variable v  to the new variable ( )Ru ) is 

                        Γ= CI
2

π
,     ( )( ) ( )








+







 ++−=Γ −
−

−
−+−+ ||

||
1

2

1
exp

2 R

R

R
RRRR

zerf
z

z
zzzz π                        (A2) 

where: Rs

R
vz χ∆±=± .  The normalization constant C  (5) then can be found with the help of this 

expression for I substituted in equation (6).  

 2. The ion density for the distribution function (5), (7) can be found as  

                                   
( )

dve
u

v
Cvrn

R

svu

T ∫
∆−∆

−−=
χχ

π
0

2
3

2

4)(                                                                        (A3) 

            where: ( ) χ∆+= 2
vru and ( )( ) kTre 0ϕϕχ −=∆ . The ions able to reach the grid-sphere surface 

with non-zero velocity are lost, and their contribution to the density is negligible in equilibrium 

because of their small production rate and transit time, as has been found in Section 3. Under these 

conditions the upper limit of the integral follows from energy conservation, 

( ) RR eMVreMV ϕϕ +=+ 2/2/ 22 . For 0=∆χ the result of the integration is 

              ( ) ( ) ( ) ( ) ( )( )





 ∆−∆−−+





 −= −∆−−

RsRss

vv

T verfvveeCvrn sRs χχππ χ
sgn12

223

0                  (A4) 
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 An approximate expression for the integrand in the equation (A3) has been used to obtain an 

analytic expression for the density, if χ∆ is comparable to Rχ∆ . After a change of variable v  to 

( ) χ∆+= 2
vru , the integrand  ( )( )22 exp svuuF −−∆−= χ  has been approximated by the 

function ( ) ( )( ) ( )( )2
expexp1 ss vuuvu −−−∆−∆− χχ , where the satellite velocity, normalized to 

the velocity of the oxygen ions that weakly changes in the altitude range 300-500km, has been taken 

to be 31.7=sv . The potential well depth that has been found with the help of the equation (A4) in 

Section 3, for system parameters considered in this paper is restricted by condition .75<∆ Rχ  Both 

integrands are plotted in Figure 7 for different magnitudes of χ∆ .  As can be seen from this figure, 

the error of such approximation results in a difference in the areas not larger than 10%. With this 

approximation the ion density is 

                                     ( ) ( ) ( ) ( )( )
RssT vvCvrn χχπ ∆Ψ−∆Ψ= ,,2

3

                                               (A5) 
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and ( )
Rsv χ∆Ψ ,  is the function ( )χ∆Ψ ,sv  calculated for Rχχ ∆=∆ . 
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Table 1. Normalized currents collected by TSS-1 and TSS-1R missions 0II ,  

calculated currents 0IIc , and their ratio cII . 

310 m,10 −−
∞n  K,oT  V,Rϕ  0II  Rrb  0IIc  cII  

2.5 1160 44.5 7.0 1.82 7.7 0.91 

70 1200 30 2.9 1.15 3.0 0.97 

8.4 1600 235 10.6 2.22 9.9 1.07 

32 1650 850 13.3 2.5 12.4 1.07 

 

Table 2.  Current, voltage, and electron density measured by TSS-1 mission 

(From Dobrowolny et. al. [1995], Table 1) 

310 m,10 −−
∞n   4.5  4.0  3.5  3.0  2.5  2.2 2.0  1.8 

mAI,   14.65  14.02  13.39  12.13  11.97  10.71  11.97  11.97 

V,Rϕ   14.0  20.3  28.8  38.1  44.5  57.2  61.0  64.8 

 

Table 3. Parameter Rrb for the solid sphere current (Eqn. (1)) 

kTe Rϕ                

          522 10−⋅DR λ   

 

0.18 

   

0.73 

 

2.9 

 

5.1 

 

6.5 

 

11.6 

 

18.1 

 

46 

 

81 

 

127 

        1000 1.63 1.36 1.20 1.15 1.13 1.10 1.08 1.05 1.04 1.03 

        5000 2.54 1.93 1.54 1.43 1.38 1.30 1.25 1.16 1.12 1.10 

        10000 3.19 2.35 1.81 1.65 1.59 1.46 1.38 1.26 1.20 1.16 
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Table 4.  Normalized current 0IIss collected by the solid sphere (two first rows), and current             

collected by the grid-sphere amp)(gsI   with the same radius, 10m (two last rows). 

 

 

 

 

 

 

 

 

 

 

 

310 m,10 −−
∞n  

V,Rϕ  

 

100 

   

500 

 

1000 

 solid            5 2.9 4.1 5.3 

 solid           70 2.5 2.8 3.1 

 grid             5 0.4 0.6 0.7 

 grid             70 5.1 5.7 6.4 
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Figure 1. Schematic of the model: the satellite moves from right to left with the velocity sv
r

,  

B
r

is the ambient magnetic field, the sphere (grid-sphere) radii is R , gray is the region close to 

neutral, 0r
r

is an arbitrary point where an ion is produced, and br  indicates the boundary between 

the regions of one- and two-dimensional electron acceleration. The tether is along the normal to 

the plane. 

 

Figure 2. Normalized potential distribution ( ) kTxeϕχ =  (dashed line), and electric field, 

dxdχ−  (solid line) in the region of one-dimensional electron acceleration, Rrx = .   

 

 

B 

R
r0 

rb 

Ram 
 

vs 
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Figure 3. (Dobrowolny et. al. [1995]. Figure 2. Comparison between experimental data 

(diamonds) and theoretical models. The satellite potential is represented on the abscissas and the 

normalized current on the ordinates.) Red dots plot the results of this report. 
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Figure 4. (Vannaroni et. al. [1998]. Figure 1. Comparison between the experimental I-V 

characteristic (dots) and theoretical models (crosses for the Alpert model and triangles for the 

Parker-Murphy model). Panel a is pertinent to the first IV-24 with experimental conditions: Ф
emf=1200V, ne=7.0·10

11
m

-3
 and Te=1200K. Panel b is pertinent to the second IV-24 with: Ф

emf=1075V, ne=8.4·10
10

m
-3

 and Te=1600K. Panel c is pertinent to the third IV-24 with: Ф
emf=3463V, ne=3.2· 10

11
m

-3
 and Te=1650K). Red dots plot the results from this report. 
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Figure 5. Normalized potential distribution inside the grid-sphere, ( )( ) kTre 0ϕϕχ −=∆ . 

Cases (a) and (b) correspond to parameters 5

1 109 ⋅=Π and 7

1 105.1 ⋅=Π respectively. 

For the solid lines 002.02 =Π , and for the dashed lines 0243.02 =Π . 
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Figure 6. Normalized potential distribution inside the grid-sphere, ( )( ) kTre 0ϕϕχ −=∆ , with 

5

1 109 ⋅=Π  and 002.02 =Π , for different grid-sphere surface potentials, 

433 10,105,10/ ⋅=kTe Rϕ ,  the solid, dotted, and dashed lines respectively. 
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Figure 7. Comparison of the exact (solid lines) and approximate (dashed lines) integrands F for 

the ion density calculations for parameters 80,40,1=∆χ ; curves 1, 2, and 3 respectively. For 

80=∆χ  the integrands are enlarged a hundred times. 
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