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PARTICLE TRACING IN THE MAGNETOSPHERE: NEW ALGORITHMS AND RESULTS

R. B. Sheldon and J. D. Gaffey, Jr.

Universily of Maryland, College Park, Maryland

We nse a fast, efficient method to trace charged parti-
cles through realistic magnetospheric electric and mag-
netic fields, greatly reducing computer sitnulation times:
The method works for particles having arbitrary charge,
energy, or pitch angle but which conserve the first two
adiabatic invariants. We also apply an efficient methed of
classifying drift orbits, which greatly simplifies the task of
identifying the last closed dnift path or other drift bound-
aries. Finally, we calculate the time-independent evolution
of the bounce-averaged phase space density along convec-
tive drift orbits. With these three tools, convective evolu-
tion of the particle distribution from the tail can now be
described quantitatively, an essential step in understand-
ing the production of unstable distributions in the magne-
tosphere. One can also categorize topologicalty different
drift orbits, which is necessary to understand the unique
particle signatures of the convecting plasma such as Alfvén
layers and the plasmapause. These signatures can then be
used to extract the electric and magnetic fields or to test
the validity of the model fields. The method is particularly
appropriate for particles in the energy range 0.01<E<100
keV, which are influenced by both electric and magnetic
fields, and for time periods without invariant destroying
waves. '

1 INTRODUCTION

_ A major problem hindering the data modeling efforts to
describe particle motion in the magnetosphere has been
the highly computer intensive aigorithms needed. Parti-
cle convection in a realistic magnetosphere has generally
been analyzed with a numerical method that integrates
the forces acting on the particle with time, essentially a
" Lagrangian approach, [e.g., Ejiri et al., 1978). These
techniques can analyze a few (< 1000) particles for a few
{< 10) hours, but are not efficient enough (even for fast
computers) to follow the evolution of an entire phase space
distribution over long time periods. A Hamiltonian en-
ergy conservation approach can produce a more efficient,
and therefore more powerful algorithm for tracing the en-
tire time evolution of the phase space distribution. A}
though the method has been known since the early days
of magnetospheric research, [e.g., Roederer, 1970], it has
generally been applied only to the equatorially trapped,
90° pitch angle particles. Taylor and Hones [1965] show
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how mnon-equatorial pitch angles can be analyzed, Mcli-
wain [1974] showed how global fields can be extracted
from geosynchronous satellite data with the method and
Whipple [1978] developed a coordinate transformation that
greaily simplifies both tasks.

A second problem, even when particle trajectories are
given, is classifying the types of drift orbits and identify-
ing the boundaries between classes. For a simple dipole
magnetic field and a Volland-Stern [ Volland, 1973, Stern,
1973] electric field, analytic expressions can be derived
that, for example, specify the stagnation point of the
plasmapause. It was this identification that permitted
Maynard and Chen [1975] to calculate a K, dependent elec-
tric field from particle signatures, A more realistic magne-
tosphere, however, does not lend itself to analytic expres-
gions, making the boundaries much harder to identify and
correlate with data. We show that not only does the con-
servation of energy method calculate trajectories rapidly,
it also provides a very efficient classification scheme that
can automate the search for topological boundaries.

The third problem arises from the wide gap between
analytic, fluid MHD theories and the models which trace
discrete particle trajectories. Without the relevant dis-
tribution function, one cannot calculate growth rates and
wave-particle interactions self-consistently. Two common,
but computationally intensive methods for estimating the
distribution function either used vast numbers of particles
to construct the moments numerically, or extrapolated dis-
tributions from a select subset of particle energies. An al-
ternative fluid approach [e.g., Northrop and Teller, 1960]
calculates the bounce averaged phase space density along
the drift trajectories, which opens up the data to the pow-
erful tools of global MHD analysis. The fluid description
can be extended to include the effects of diffusion and loss
and even time-dependence. Thus one can begin to cre-
ate quantitative models of the entire convecting plasma
without being restricted to discontinujties at topological
boundaries.

We develop three tools that address each of these prob-
lems, and demonstrate them by displaying the effect of
pitch angle on convecting ion trajectories in realistic mag-
netic and electric fields, which, to our knowledge, has not
been done before,

2 THECRY

The first two tools are carefully described by Whipple,
so we give a briel summary of the Hamiltonian method
and classification scheme. If a charged particle conserves
the first two adiabatic invariants, it also conserves energy,
since the first invariant, ¢ = E| /B is proportional to the
perpendicular Kinetic energy (K.E.), and the second invari-
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ant, J = m § v|ds, is proportional to the paralle] velocity.
Implicit in the use of the first iwo invariants is an average
over the gyro and bounce motion of particle. The key idea
is that particle drift motion must conserve energy so that
a drift trajectory must be a contour of constant total en-
ergy, and calculation of these contours is much faster and
more efficient than integration of forces. If there are no
inductive electric fields due to a changing magnetic field,
dB/3t = 0, then we can express the electric field as the
gradient of a scalar, U. Assuming that the drift speed is
insignificant compared to gyration, we can write the total
energy as, W = KE + PE = mv?/2 + U = uB,.~+ qU,
where B.(K) is the magnetic field magnitude at the mir-
ror point. We label particles by their 4 and K values,
where K = J/\/2mpg = 4 [ /B,y — B(s)ds. So then,
rather than considering drift motion only in the equato-
rial plane, we calculate the iso-energy contours on a mirror
point K-surface, and then map to the equatorial plane.
Whipple showed that one can greatly simplify the clas-
sification of drift orbits by a coordinate transformation
which relies on the conservation of energy; i.e., since

dW/dt = 0 = d(pBn)/dt + d(ql/)/dt, ihen

_ov S (1)
OB,.(K) q

Whick says that in UB(K) space, particle trajectories are
straight lines whose slope is proportional to —u/fgq. For a
simple dipole magnetic field with a Volland-Stern electric
field (Figure 1), the mapping from real space to UB(K)
space is double valued. However, this can be resolved by
gplitting the magnetosphere into night and day halves,
the boundary being the line at which contours of con-
stant B and U are tangent. In the night half of the mag-
netosphere the particles convect toward higher B (earth-
ward), while on the day side particles convect toward lower
B (anti-earthward), easily distinguishing the two popula-
tions. When a particle orbit crosses a tangency line in
real space, it reverses direction in UB(K) space so that
these tangency lines are also limits of motion in UB(K)
space. The ionosphere of the earth and the magnetopause
complete the bounding of particle motion in UB(K) space.

With this mapping, topological boundaries become sim-
ple geometrical constructions involving slopes and tan-
gents, which can be easily automated and calculated to
any level of precision. For example, the plasmapause is
the last closed drift orbit for a zero energy ion. This trans-
lates to a horizontal line in UB(K) space that is tangent to
the peak of the lower bounding tangency curve. Likewise
the Alfvén layer for any energy is found by picking an en-
ergy (slope) that intersects the tail and making it tangent
to the appropriate bounding curve such that it maximally
penetrates into the magnetosphere.

One must recalculate this mapping for each value of K,
or equatorial pitch angle desired. In general the tangency
curves can be very different, even changing the topology of
the drift boundaries in UB(K) space. These bounce aver-
aged drift orbits are then mapped in real space along the
field lines to the equatorial plane to compare trajectories
of differing K (Figure 2).
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Fig. 1: An equatorial cut in the X-Y plane to UB({K)
mapping for a dipole magnetic field + Volland-Stern | Vol-
land, 1973, Stern, 1973] shielded electric field appropri-
ate for K,=0 [Maynard and Chen, 1975]. Lines of tan-
gency between contours of constant B and U are shown
dotted. Dash-dotted line converts B,, to radial distance
with right hand scale. The plasmapause, the last closed
0.0 eV /nT trajectory, is bracketed by solid lines. The open
drift irajectory that penetrates most deeply into the mag-
netosphere is bracketed by dashed lines. With a slope of
19.2 eV /nT, it follows a banana orbit but only crosses a
tangency line once, at dusk close to the earth.

Fig. 2: Equatorial X-Y to UB(K) mapping for realis-
tic Olson-Pfitzer [Olson ef al., 1979] magnetic field and
Volland-Stern (K,=0) + icnospheric dynamo [Richmond
et ol , 1980] electric fields. Top panele calculated for 90°
pitchangles, K=0; bottom panels for K=100. The extra
loop in X-Y tangency curves generated by a quadrupo-
lar jonospheric field becomes a topological pleat in UB(K)
space. Trajectories labelled similarly as previous figure.
Dashed trajectory has a slope of 10.2 eV /nT in top pan-
els, 20.2 eV/nT in bottom panels.
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In the guiding center approximation, we know [eq. 35,
Northrop and Teller, 1960] that the phase space density

Qw, B, Jnu) = ﬂ'f(ﬁ 'ﬁ)/mg (2)

is conserved along the bounce-averaged convection trajec-
tory, where a, # are the Euler potentials for labeling field
lines, y, J are the first and second invariants, and f is the
standard phase space density. An equivalent description
in terms of the particle total energy is [eq. 41, Northrop
and Teller, 1960],

n(F, W, u) = 2BQ /v (3)

where W is the total energy defined above, v is the parallel
velocity, and n is the number of particles in d®r at a given
value of W, u.

3 ALGORITHMS AND RESULTS

To carty out this method for any K or equatorial pitch
angle, we need an algorithm for calculating the functional
dependence of B,,(K) on K. We do this numerically, (Fig-
ure 3), first mapping the field line from the equator to the
ionosphere, here showing several longitudes collapsed into
one display. We numerically integrate these B(s) cutves
to obtain the second adiabatic invariant K({g). Note that
on the day side, there are field lines which do not have a
mintmum at the equator, and thus K is undefined (imag-
inary) over some range of s. Northrop and Teller [1960]
discuss this phenomenon, and like them, we find a gener-
alized form of K defined as the sum of all non-imaginary
K's along a field line. With that definition, we calculate K
from the minimum, either at the equator or elsewhere, to
get K(s). With these two quantities, we can now calculate
Br(K) as a polynomial expression, plotted in the final
panel. We use 10th degree polynomials and arrive at an
expression with less than 3% maximum deviation. Note
that this is just an automated way of carrying out the Tay-
lor and Hones graphical method, which we independently
derived.

This part of the algorithm is the most time consuming,
taking 3 hours on a SUN IPC for solving a 100 x 100 grid
of the equatorial plane and using 200 integration steps
along a field line. Once the polynomials are initialized,
calculating a total energy for arbitrary K and g, which
gives simultaneously every spatially distinct trajectory in
the equatorial plane, required only 30 seconds, or only
3 seconds if p alone changes. This is to be contrasted
with 3 minutes per single particle trace using a predictor-
corrector method to time-integrate the forces.

Now that we have a realistic B(K) mapping, we also
need to make U more realistic as well. Pinto et el [1987]
showed that drift trajectories would be greatly influenced
by the ionospheric dynameo electric field [Richmond et al.,
1980]. This dynamo field strengthens convection at low
L-shells and compensates for the Voilland-Stern shielding,
However, the field is quadrupolar and topologically differ-
ent from the dipolar Volland-Stern field, so that (Figure
2) in real space the tangent lines form a loop at low alti-
tudes. When mapped into UB(K) space, the loop becomes
a pleat, but only in the night half of the magnetosphere.
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Fig. 3: a) Fieldlines traced from equatorial plane at 10
Re with longitude varying from midnight to noon in 20°
increments; b) K(s) for fieldlines at 10 Re; ¢} B, (K), which
is well defined for all fieldlines; and d) B(s) for fieldlines at
10 Re with an off equatorial minimum in the noon fieldiine.

Since this is the first time {rajectories have been shown
for these realistic fields, we plot some examples in Figure
4. In panel {a), we see that for K=0 or 90° equatorial
pitch angles al a magnetic moment of 0.01 keV/nT, there
are closed drift trajectories that do not encircle the earth
[e.g., Chen, 1970], called “banana” orbits after tokomak
usage [Strangeway and Johnson, 1984]. In UB(K) space,
these orbits are straight lines that nest in a concavity of
the lower tangency curves. Note that the extra loop sup-
ports a new class of banana orbits; however these banana
orbits are inside normal, earth encircling trapped orbits,
and thus have no access to the open drift trajectories from
the tail. In panel (b), we see that for K=100, the banana
orbits merge and appear outside the normal trapped orbit
region. This allows them to be readily filled by diffusion or
Coulomb drag effects. More importantly, there exists an
open drift orbit threading between the normal closed or-
bits and the banana orbits. Because of the large value of B
at low altitudes, convecting tail particles on this open drift
trajectory become more pancake-like as the pitch angle ro-
tates toward 90°, panel {c}, and equatorial n(f,;, W, ) in-
creases. Panel (d) plots the change in B.,/\/u(Bm — Be),
which is directly proportional to the change in n(#,, W, ).
Since this orbit is open to the tail, unlike its near neigh-
bors, it alone experiences an order of magnitude increase
in n(7eq, W, 4) for some specific range of W, y. This mecha-
nism can explain the peaks seen in this vicinity by ISEE-1,
[Williams end Frank, 1984, Sheldon, 1993],
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Fig. 4: a) X-Y space trajectories for g = 0.01 keV /nT,
K=0; b} X-Y space trajectories for p = 0.01 keV/nT,
K=100; ¢} K=100 Equatorial pitch angles «, contours
every 2°; and, d) Bm(ﬁ’)/\/p(Bm(K) — B,,) for p=0.01
keV /nT, K=100.
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