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Abstract.

The recent discovery of energetic particles trapped in the cusp (CEP) in close association

with diamagnetic cavities (CDC) strongly suggest a new location for particle acceleration. We

use relativistically correct particle tracing in a Tsyganenko 96 equinoctal cusp to discover

which particles are trapped, and estimate their quadrupole adiabatic invariants. By mapping

these trapped particles into the dipole, we predict the spectra, pitchangle distribution, and

spatial distributions which may result from such a high latitude source, and show that it is in

many ways similar to the observations of outer radiation belt electron injections. We scale the

mechanism to other magnetospheres and the heliosphere to demonstrate that it is consistent

with observations over vast spatial and energy scales.
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INTRODUCTION

In an earlier paper, [Sheldon et al.(2005)] (SCF1), we argued that a quadrupole trap could

function as an accelerator, a cross between a dipole and Fermi-accelerator, possessing the best

features of both. Alternatively, a quadrupole accelerator is a generalization of the well-known

Fermi-I and Fermi-II acceleration mechanism, where the compressional energization goes

into the perpendicular, rather than the parallel velocity. Since this was a novel mechanism,

we argued in general terms for its significance at Earth, showing that it potentially could

outperform both the dipole and bow-shock acceleration in terms of power and throughput.

In this paper, we present in more detail the way this physical mechanism may

explain the somewhat mysterious origin of outer radiation belt electron (ORBE) injections

[McIlwain(1996), e.g.,], and physically link them to solar wind conditions that impact

the quadrupole cusp. This placement of source of MeV electrons outside the dipole but

inside the magnetosphere may account for their recent discovery by POLAR [Sheldon

et al.(1998a);Chen et al.(1997);Chen et al.(1998)]. Likewise, the physical mechanism

we propose may also explain some of the peculiar correlations and non-linear relations

observed between MeV injections and solar wind/magnetospheric activity [Paulikas and

Blake(1979);Baker et al.(1986);Koons and Gorney(1991);Li et al.(2001)].

As we argued in SCF1, a trap is thermodynamically preferred for acceleration, both

because the efficiency of energy conversion is higher for a multi-step, stochastic process, and

because the total energy required for particle acceleration in minimized. Now a quiescent,

static trap does not accelerate, that is a property of the trap dynamics. But in order to write the

dynamics equations, the ground state of the static trap must be understood. That is, dynamics

perturbs the Hamiltonian around an assumed equilibrium solution. Since the quadrupole

accelerator is novel, this paper will not solve the dynamical problem, but will describe the

static equilibrium solution.

Accordingly in section one, we discuss the particle tracing tools we used to find the

volume of phase space trapped in the quadrupole. In section two, we map that phase space
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volume to the dipole, and estimate some characteristic particle distributions to compare

with data. In section three, we generalize the mechanism as best we can to other planetary

magnetospheres, and compare with data, before concluding.

PARTICLE TRACING METHOD

We traced both protons and electrons through a quadrupolar cusp region of a T96

[Tsyganenko and Stern(1996)] magnetosphere for 093 Julian date in IGRF epoch year 2000 at

0000 UT, using a solar wind of 3/cc at 400 km/s and 10nT Bz north. Dst is a nominal +10

nT characteristic of an extended quiet period with little or no ring current. We calculated the

center of the cusp to be at GSE coordinates (6.88, -0.04, 10.1) at a radius of 12.23 Re from the

Earth.

Particles were given initial conditions at various perpendicular radii (0-6 Re), and at

various parallel distances (-3 to 1 Re) from this central point at two different MLT ”sides”

of the cusp, 0000 and 1200MLT. The program looped through a range of starting energies

(200-1400 keV for electrons) and local pitchangles (70, 80, and 90 degrees), or five nested

loops altogether.

For each starting location, provisional cusp invariants were calculated. The cusp magnetic

moment is defined identically with the dipole, or perpendicular energy divided by magnetic

field strength. The gyrophase for all particles was started at 0. The cusp second invariant

should be calculated by integrating the parallel velocity along the bounce orbit, instead we

used the proxy of the cusp equatorial pitch angle (CEqPA), or the pitchangle of the particle

when it arrives at the high latitude minima on the gyrocenter field line. The bounce phase

is the distance from the cusp equator along the fieldline, and was started from -3 Re to +1

Re. Finally, the third invariant is proportional to the flux enclosed by a drift orbit around the

cusp, but without knowing whether the drift trajectory is closed, we cannot calculate this

beforehand. So we use as a proxy the Euclidean distance from the fieldline minima to the

quadrupole center (C-shell). The drift phase is the clock angle around the cusp (CLT), which
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is relative to the quadrupole null rather than the Earth’s surface field, with 1200 being in the

plane that includes the sun and the B-field vector at the quadrupole null.

For these rigidity particles, the magnetic gradients are large, so that gyrocenter corrections

must be made for the starting point, potentially violating all these invariants. In addition, the

gyro-orbits can be quite large compared to the scale of the cusp. That is, we calculate the

gyroradius for a given energy and starting position B-field strength, offset the field-line tracing

to the gyrocenter and recalculate the first invariant. Given the large gradients, this is still only

a first order correction, and near the quadrupole center, the higher order corrections may even

diverge. When this happens, the particles are still traced, but the provisional invariants are set

to zero.

Finally, we use a relativistically correct, ordinary differential equation solver [Glasel

et al.(1999)] for the full equations of motion, based on Numerical Recipes [Press et al.(1986)]

Bulirsch-Stoer routines as implemented at CERN. The ODE codes as well as the T96 codes

are all in FORTRAN77 compiled with double precision. We use this method to avoid roundoff

error in this stiff integration, with an accuracy much better than the Runge-Kutta 4/5 method

used previously, e.g., [Delcourt and Savaud(1999)]. Failure to achieve highly accurate

numerical integration leads to numerical diffusion in both space and invariants, which can

cloud the results.

Despite our precautions, we discovered that truncation error in the magnetic field model

was preventing us from drifting low-energy particles. Since the T96 model is a physical

model of the magnetosphere, it is composed of multiple current systems all summed together

vectorially, such as the paraboloidal Chapman-Ferraro current system, the cylindrical ring

current, a 10th order IGRF internal multipole field etc. All these currents must add to zero in

the region of the quadrupole center. Subtracting these large numbers results in less than three

significant digits of magnetic field strength in the vicinity of the cusp corresponding to a scale

length of about 10km. When the gyro-radius of the particles was smaller than about 100 km,

this ”posterizing” of the magnetic field caused the drift orbits to be erratic. So despite the real
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improvement in adiabaticity for low energy particles, the numerical particle tracing showed a

loss of the third adiabatic invariant.

We terminated the particle tracing if either the particle exceeded 160 minutes, 200,000

timesteps, or exited a GSE box ((0,20),(-12,12),(-1,20)). Although strictly speaking, the third

quadrupole invariant is defined by a closed orbit around the cusp, we use a time threshold as a

shortcut to estimate the presence of the third invariant.

Particle orbits are classified as chaotic, quasi-trapped, and well-trapped. For a trapped

particle with cusp-equatorial pitchangles less than 90 degrees, one can observe all motions

associated with the three invariants: gyration about a field line, bouncing along a field line

around the off-equatorial minimum, and drift around the cusp. The sum of these motions

produce the ”lily-shaped” orbits described by [Sheldon et al.(1998b)].

PHASE SPACE MAPPING

Using the three provisional invariants above with trapping time threshold>5980(1998)

seconds, or a quasi-trapping threshold>980(198) seconds for protons(electrons) as a proxy for

the existence of a third invariant, we can then classify the thousands of protons and electrons

traced through the cusp as trapped (blue), quasi-trapped (red), or chaotic (green). Figure 1

shows the electrons, figure 2 shows the protons in a four panel projection of the 3-D phase

space. In the lower left is a 3-axis projection, whereas the remaining panels show projections

into two dimensions only. Note that the axes are arranged so that the three 2-D panels can be

folded into the sides of a box.
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Figure 1. Electron phase space mapping. Green are chaotic, red are quasi-trapped, blue are

trapped.
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Figure 2. Proton phase space mapping. Green are chaotic, red are quasi-trapped, blue are

trapped.
From the upper left panel for electrons in Fig 1, we see that the maximum magnetic

moment trapped is about 25 keV/nT, and cusp equatorial pitchangles (EqPA) range from 40-90

degrees. The cutoff at 3 keV/nT between trapped and quasi-trapped (blue vs. red) we attribute

to numerical roundoff errors in the magnetic field model, which would be trapped if a better

numerical field model were used.

The upper right panel shows that the C-shell varies from 1-5 Re, with a high threshold

that depends on CEqPA, larger for locally 90 degree pitchangles. The absence of trapping

below C-shell∼1 we attribute to the very small|B| near the center which destroys the

invariants. Note the number of quasi-trapped orbits at large C-shell, which we attribute to
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the CLT asymmetry of the quadrupole cusp causing some electrons to escape before they

complete a drift orbit.

Finally, the bottom right panel shows a similar quasi-linear dependence of the high

C-shell with magnetic moment, larger for smaller magnetic moment. We recognize the same 3

keV/nT numerical limit seen in the left panel. Reference to the lower left panel, shows that the

trapped (blue) points form a compact cloud surrounded by untrapped or quasi-trapped orbits,

demonstrating that phase space is well-ordered, that trapping is truly occurring.

Similarly for the protons in Fig 2, the same compact cloud of trapped electrons is seen

in phase space, however, the scale for magnetic moment has changed, ranging from 1-1000

eV/nT. The maximum limit is at 200 eV/nT and threshold for numeric roundoff occurs at 15

eV/nT, but otherwise the trapping regions for both are remarkably similar. This tells us that the

primary difference between relativistic electrons and warm protons is their gyro-radii. Once

this is accounted for, the two trapped particle distributions are nearly identical.

We must point out, however, that our simulation has no electric field. Should there exist

even as little as 1 mV/m field, the proton drift orbits would be greatly distorted, whereas the

relativistic electrons would hardly notice. The effect of this distortion would be to shrink the

volume of the proton trapping region, making the cusp into an asymmetric trap and possibly a

source of space charge as well.

Now if these trapped particles pitchangle scatter, they will not change their energy,

but they will reduce their magnetic moment and simultaneously lose their 2nd quadrupole

invariant. That is, they will escape the high-latitude minima and travel along the magnetic

field line toward the dipole equator. Depending on their CLT, this field line could be on the

dayside, around the flanks or down the tail. Alternatively, the particle can betatron energize

due to a cusp compression, and exceed the trapping limit in magnetic moment or Cshell. Once

again, the escaping particle will appear at the dipole equator, but with much the same magnetic

moment as before.

Therefore mapping the magnetic moments from the cusp to the dipole gives a upper
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limit 0.2(25) keV/nT for protons(electrons), which around L=5 Re or 240 nT corresponds to

48(6000) keV particles. That is, the peak energy of the ion ring current, and the peak energy

of the outer radiation belt electrons (ORBE) both map to the magnetic moment upper limit of

the cusp trapping region.

Since the|B| minima in the cusp can be deeper or shallower than the corresponding

dipole equator, the dipole equatorial pitchangle of the escaping particles varies between ¡40-90

degrees, with a probable peak away from 90 degrees. In the outer dipole magnetosphere, or in

the tail, the equatorial field strength can often be smaller than that of the 1-6 Re C-shell region,

which excludes the near 90 deg pitchangles. The near 0 deg pitchangles are also excluded

because of the wider ”loss cones” of the cusp trapped population. As a consequence, the

escaping pitchangle distributions (PAD) will appear as ”butterfly” PAD, especially in the outer

magnetosphere. Subsequent diffusion into the inner dipole magnetosphere would tend to drive

these butterfly PAD toward a 90 deg peaked or ”pancake” PAD, but residues of the butterfly

distribution might be discernible as ”head-and-shoulder” PAD [Sheldon(1990);Sheldon and

Hamilton(1993)].

Finally the cusp trap does not map to the entire dipole, it only has access to the outer

regions of the dipole. The smallest dipole L-shell which threads through the cusp trap occurs

at noon, and determines the minimum L-shell boundary for cusp particle ”injections” into the

dipole. It depends on the topology of the cusp, which varies with UT, but for the equinoctal

cusp this minimum L-shell will be at its maximum value. That is, the solstices would have

deeper penetration of cusp injections.

OTHER MAGNETOSPHERES

Since these trapping limits in the quadrupole cusp appear to depend only on rigidity

of the particles, we argue that the topology of the cusp is the most important controlling

factor. Accordingly, all dipole magnetospheres embedded in the solar wind will have a

quadrupole trap whose geometry is determined by scaling the solar wind and planetary
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magnetic field appropriately. Therefore using simple scaling arguments, we can estimate

the ORBE population at all the measured magnetospheres, from Mercury to Neptune, and

compare it to observations. This is a test whether the quadrupole cusp can be generalized or

scaled, and whether it remains the most efficient accelerator after scaling. To our knowledge,

it also the only such generalized theory of ORBE formation in comparative magnetospheres.

The scaling we need, then, is the size of the cusp, the magnetic field of the cusp, and

the ratio of the cusp to planetary field strength. The first two items give us the rigidity of the

maximum trapped particle, and the last item gives us the adiabatic energy increase of such a

dipole injected cusp particle.

Since the rigidity or gyroradius determines the limiting magnetic moment, we have,

ρ ∝ mv/qBCUSP orE ∝ B2
CUSP ρ2 (1)

Now it is clear that the gyroradius must be smaller than the radius of the quadrupole cusp,

which in turn is some fraction of the distance to the stagnation point, so we can write

ρ ∝ rkRSTAG, wherek is some conversion from stagnation distance to cusp size, andr is the

planetary radii in meters. Substituting the dipole approximation,BCUSP = B0/R
3
STAG, where

B0 is the surface field, andRSTAG is the distance from the planet to the subsolar stagnation

point of the magnetosphere in planetary radii, we have

E ∝ (B0rk)2/R4
STAG (2)

Taking the ratio with Earth radiation belts eliminates all the constants in common, giving

EPLANET

EEARTH

=
(

B0

BEARTH

Rp

Re

)2 (
REARTH

RSTAG

)4

(3)

Normalizing to 5 MeV for the radiation belts at Earth, gives the following table:
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Table 1. ORBE Scaled to Earth

R STAG Rp/Re B0 E RAD Obs. Pred./Obs.

Planet Planet r nT keV keV

Mercury 1.4 0.38 330 660 45 14

Venus 1.1 0.95 <10 <4 – –

Earth 10.4 1.00 31,000 5000 n/a n/a

Mars 1.25 0.53 <6 <0.5 – –

Jupiter 65 11.2 430,000 7100 100000 1/14

Saturn 20 9.5 21,000 1600

Uranus 20 4.0 23,000 810

Neptune 25 3.8 14,000 120
Note that the table predicts a 7 MeV radiation belt at Jupiter, which is about 1/10 of

the observed energy peak, which might be attributed to the inflated dipole at Jupiter leading

to anomalously large cusp and cusp fields. The large value at Mercury is also somewhat

surprising, but possibly consistent with the Mariner data if the instrument were functioning

without pulse pileup [Christon(1987);Christon(1989)]. Otherwise the simple scaling has

all the right features, strong belts at Jupiter, moderate belts at the outer planets, weak or

nonexistent at the inner planets.

Since the Sun is also magnetized and embedded in the flowing inter-stellar medium

(IMF), we might also expect a some cusp acceleration. However the topology is considerably

different, so we have to set up a radically different picture. The fact that the Sun’s dipole is

tilted with respect to its rotation axis, means that the solar wind carries with it a27/2 = 13 day

polarity reversal separated by a current sheet. Since the field spirals out like a water sprinkler,

(a Parker, or more correctly, an Archimedean spiral) by the time the field has reached the

heliopause it is nearly perfectly tangential. This results in a marble cake appearance as the

field reverses tangential direction every 13 days. The thickness of this layer is approximately

13d ∗ 24hr/d ∗ 3600s/hr ∗ 400km/s = 3AU , but due to compression at the heliopause, thins
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down to∼1 AU.

From SCF1, we argued that cusp acceleration was a generalization of Fermi acceleration

to the perpendicular component. This is precisely what appears to be happening to the plasma,

which is trapped in tangential layers undergoing compression. However it is not first order, but

second order acceleration that concerns us, which is the heating due to random fluctuations in

the compression. So the particles must circulate around the B-field within the layer, giving a

gyroradius of about 0.5 AU. Meanwhile the magnetic field has decreased by 1/R from its Earth

value of, say, 5nT at 1 AU to 0.05 nT at 100AU. Again, the compression raises that value by

a factor 4, giving 0.2 nT in this compressed layer. Plugging these constraints into a rigidity

calculation gives:

ρ = p⊥/(qB) (4)

γ =

(
1 +

(
ρqB

mc

)2
)1/2

(5)

K = (γ − 1)mc2 (6)

which is relativistically correct.

Assuming that galactic cosmic rays appear in this region fully stripped, and that

anomalous cosmic rays (ACR) are only singly charged, we calculate the following high-energy

cutoffs, which would appear as a peak in the energy spectrum right below the cutoff. Many

features of this model are similar to standard ACR acceleration theory, which invokes diffusive

transport in the presence of Corotationg Interaction Region (CIR) shocks. In contrast, we use

adiabatic transport (not diffusive) which can be trapped in a current layer (rather than shocks).

This also permits the acceleration to occur in thinner layers, rather than the more global CIR

structures. Of course, the standard theory is far more developed with much better predictions.

Our question is whether the acceleration theory we have developed can be fruitfully applied to

the heliopause.
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Table 2. Cosmic Rays at the Heliopause

Specie Charge ρ B K K/nuc

e AU nT MeV MeV/nuc

electron -1 0.3 0.2 2690 —

Galactic H 1 0.3 0.2 1900 1900

Galactic He 2 0.3 0.2 2790 700

Galactic O 8 0.3 0.2 11100 700

Anomalous H 1 0.3 0.2 1900 1900

Anomalous He 1 0.3 0.2 860 215

Anomalous O 1 0.3 0.2 238 15
From the table, it can be seen that the model correctly predicts the peak in both the

galactic protons and electrons. Jokipii argues that the cutoff for ACR He is at∼60 MeV/nuc,

and ACR O is at∼15 MeV/nuc. We seem to do well for O, but overpredict the ACR He peak

by a factor of 3.

CONCLUSIONS

The agreement at Earth is striking, with ORBE injections having many of the same

properties as our theoretical cusp injections: 5 MeV energy inner L-shell penetration limit,

butterfly PAD, and equinox to solstice asymmetry. In this work we have calculated static

properties of the phase space volume, but the dynamics of ORBE injections are also very

encouraging for future work. Intriguingly, the cusp protons were found to map nicely to the

ring current, suggesting that the near Earth plasma sheet may not be the only source of ring

current injections. However, realistic electric fields will strongly impact the cusp protons, and

must be taken into account in future models.

The comparison with other magnetospheres is another test of the mechanism, for

which the scaling model performed modestly well. It may have overpredicted Mercury
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while underpredicting Jupiter. These effects may be due to unique features of these two

magnetospheres, with Mercury occupying a larger fraction of the magnetospheric volume

than any other planet, and Jupiter inflating its magnetosphere with Io plasma, departing quite

substantially from a dipolar field.

The comparison to ACR acceleration showed that the model could correctly predict

aspects of this well-known phenomena. Without claiming superiority, our model may perhaps

provide a complementary source of ACR in the current simulations.

Three different tests of the mechanism were examined, and while high accuracy was not

obtained, order of magnitude agreement suggests that the mechanism has not been invalidated

by any of the data.
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